Evaluation of the site amplification factors estimated by equivalent linear site response analysis using time series and random vibration theory based approaches

Stanko, Davor
Gülerce, Zeynep
Markusic, Snjeana
Salic, Radmila
The objective of this study is to estimate and compare the site amplification factors (AFs) using two different one dimensional (1-D) equivalent-linear (EQL) site response analysis approaches: the time series (TS) approach and the random vibration theory (RVT) based method. For this purpose, random soil profiles combined with different soil types, EQL soil properties, and unit weights are tested at several input ground motion levels. Analysis results showed that the AFs estimated by the TS-approach are systematically higher than the AFs estimated by the RVT-based method in the short period range (T < 0.5 s), especially when the bedrock peak ground acceleration is higher than 0.2 g. The relative difference between the AFs estimated in both methods is most prominent in granular soils: differences reach up to 35-40% compared to 10-15% for clays. On the other hand, the AFs calculated in this study are in good agreement with the empirical AF models utilized in recent ground motion models, indicating that the RVT-based AF models may be preferred in the future to cover a larger range of scenarios than the empirical datasets.


Performance comparisons of seismic assessment methods with PSD test results of a deficient RC frame
Ozcebe, G.; KURT, ELİF; Binici, Barış; Kurç, Özgür; Canbay, Erdem; Akpinar, U. (2009-12-01)
The accuracy of estimating the performance levels of a deficient RC frame using linear elastic and nonlinear dynamic analysis is evaluated in this study. This was achieved by comparing the response of a structure tested with pseudo-dynamic testing and estimated by the linear elastic assessment procedures along with nonlinear dynamic analysis. The test structure (three bay-two storey planar frame) is a 1/2 scale reinforced concrete frame having masonry infill walls in the central span. The test frame contain...
BOZKURT, ÖMER YAVUZ; KANBER, BAHATTİN; Aşık, Mehmet Zülfü (World Scientific Pub Co Pte Lt, 2013-06-01)
This study discussed the effects of shape parameters on the radial point interpolation method (RPIM) accuracy in 2D geometrically nonlinear problems. Four finite deformation problems with compressible Neo-Hookean material are numerically solved with the RPIM algorithm using the multi-quadric (MQ) radial basis function. Both regular and irregular node distributions are used. Their displacements and Cauchy stresses are compared for different values of shape parameters and monomial basis. It is found that the ...
Comparison of Bayesian MAP Estimation and Kalman Filter Methods in the Solution of Spatio-Temporal Inverse ECG Problem
Aydin, Umit; Serinağaoğlu Doğrusöz, Yeşim (2009-09-12)
In this study, spatial only, and spatio-temporal Bayesian Maximum a Posteriori (MAP) methods and an another spatio-temporal method, the Kalman filter approach, are used to solve the inverse electrocardiography (ECG) problem. Training sets are used to obtain the required a priori information for all methods. Two different approaches are employed to calculate the state transition matrix (STM), which maps the epicardial potentials in two consecutive time instants in the Kalman filter method. The first one uses...
Evaluation of discrete ordinates method for radiative transfer in rectangular furnaces
Selçuk, Nevin (1997-01-01)
The discrete ordinates method (DOM) and discrete transfer method (DTM) were evaluated from the viewpoints of both predictive accuracy and computational economy by comparing their predictions with exact solutions available from a box-shaped enclosure problem with steep temperature gradients. Comparative testing shows that the S-4 approximation produces better accuracy in radiative energy source term than in flux density in three orders of magnitude less CPU time than that required by the DTM. The S-4 approxi...
Comprehensive evaluation of equivalent linear analysis method for seismic-isolated structures represented by sdof systems
Dicleli, Murat (2007-08-01)
In this study, the equivalent linear (EL) analysis procedure used in the design of seismic-isolated structures is evaluated. The effect of several parameters such as the intensity and frequency characteristics of the ground motion, isolator properties and the structure mass are considered in the evaluation. First, the EL analysis procedure is evaluated using harmonic ground motions with various excitation periods and a suite of 15 seismic ground motions with various frequency characteristics. Then, the effe...
Citation Formats
D. Stanko, Z. Gülerce, S. Markusic, and R. Salic, “Evaluation of the site amplification factors estimated by equivalent linear site response analysis using time series and random vibration theory based approaches,” SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, pp. 16–29, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46448.