Interfacial Interactions and Flammability of Flame-Retarded and Short Fiber-Reinforced Polyamides

2009-01-01
Gunduz, Huseyin Ozgur
Isitman, Nihat Ali
Aykol, Muratahan
Kaynak, Cevdet
Interfacial properties, crystallinity and flammability of short fiber reinforced and flame retarded polyamide 6 and polyamide 66 compounds are investigated, emphasizing the influence of flame retardant fillers on the resistance of fiber/matrix interface to shear. Interfacial shear strengths are derived through a micromechanical approach by determining the tensile properties and residual fiber length distributions. Validated by fracture morphologies, interfacial strengths are found to be governed by filler-induced apparent crystallinities and fractional occurrence of polyamide polymorphs, obtained via peak deconvolution of X-Ray diffraction patterns. Although flame retardant additives based on Br/Sb synergism are found to impart excellent flammability reductions regarding oxygen index and UL94 classifications (V-0 rating), degree of crystallinity; thus, interfacial properties are deteriorated due to lowered thermal expansion and increased cooling rates. Red phosphorus as a flame retardant also induces a UL94 V-0 and significant reduction in flammability together with the facts that crystallinity is not altered and a strong fiber/matrix interface is maintained. Use of melamine cyanurate in an unreinforced polyamide improves the limiting oxygen index considerably; however, the UL94 rating remains unchanged as V-2 as a consequence of increased level of melt dripping. Melamine cyanurate additionally increases the degree of crystallinity through promotion of heterogeneous nucleation.
POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING

Suggestions

FLAME RETARDATION AND MECHANICAL-PROPERTIES OF 1,3 PROPYLENE-GLYCOL BASED UNSATURATED POLYESTER
Gündüz, Güngör; OZTURK, S (Informa UK Limited, 1994-01-01)
Flame retardance properties of 1,3 propylene glycol based unsaturated polyester containing 40% styrene and 20% acrylonitrile were investigated. The polyester with 12% Br content is self-extinguishing while others with lower bromine contents burn slowly. The high decrease in mechanical strength due to the presence of bromine is highly compensated by acrylonitrile.
Impact modified polyamide-6/organoclay nanocomposites: Processing and characterization
Isik, Isil; YILMAZER, ÜLKÜ; Bayram, Göknur (Wiley, 2008-02-01)
The effects of melt state compounding of ethylene-butyl acrylate-maleic anhydride (E-BA-MAH) terpolymer and/or three types of organoclays (Cloisitel(R) 15A, 25A, and 3013) on thermal and mechanical properties and morphology of polyamide-6 are investigated. E-BA-MAH formed spherical domains in the materials to which it is added, and increased the impact strength, whereas the organoclays decreased the impact strength. In general, the organoclays increased the tensile strength (except for Cloisite 15A), Young'...
Microwave-assisted simultaneous synthesis of conducting, non-conducting and cross-linked polymers from sodium 2,4,6-tribromophenolate and LiOH
Celik, Gueler Bayrakli; Kisakuerek, Duygu (Informa UK Limited, 2007-01-01)
Poly(dibromophenylene oxide) (P) and conducting polymer (CP) and/or cross-linked polymer (CLP) were synthesized simultaneously from sodium 2,4,6-tribromophenol ate and LiOH by microwave energy in a very short time interval. Polymerizations were carried out (i) under constant microwave energy and constant amount of water with different time intervals ranging from I to 20 min, or (ii) at constant time intervals and constant amount of water with variation of microwave energy ranging from 90 to 900 W, or (iii) ...
Interfacial Strength in Short Glass Fiber Reinforced Acrylonitrile-Butadiene-Styrene/Polyamide 6 Blends
Isitman, Nihat Ali; Aykol, Muratahan; Ozkoc, Guralp; Bayram, Göknur; Kaynak, Cevdet (Wiley, 2010-03-01)
The purpose of this study is to derive the apparent interfacial shear strength of short glass fiber reinforced acrylonitrile-butadiene-styrene/polyamide 6 (PA6) blends with different PA6 contents. Tensile stress-strain curves and fiber length distributions are utilized within a continuum micromechanics approach which involves a unified parameter for fiber length distribution efficiency represented as a function of strain. The unique combination of predicted micromechanical parameters is capable of accuratel...
Flow induced polymer-filler interactions: Bound polymer properties and bound polymer-free polymer phase separation and subsequent phase inversion during mixing
Akay, G. (Wiley, 1990-11)
The irreversible absorption of macromolecules on to solid filler particles during mixing in the melt is investigated. The molecular weight and concentration dependence of the absorbed layer thickness are evaluated and the chemical and morphological nature of the irreversibly absorbed polymer (bound polymer) are determined. It is found that the thickness of the bound polymer is not only dependent on the filler concentration but also dependent on polymer molecular weight. Bound polymer in high density polyeth...
Citation Formats
H. O. Gunduz, N. A. Isitman, M. Aykol, and C. Kaynak, “Interfacial Interactions and Flammability of Flame-Retarded and Short Fiber-Reinforced Polyamides,” POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, pp. 1046–1054, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46570.