Natural convection heat transfer from inclined plate-fin heat sinks

2013-01-01
The steady-state natural convection from heat sinks with parallel arrangement of rectangular cross section vertical plate fins on a vertical base are numerically investigated in order to obtain a validated model that is used for investigating inclined orientations of a heat sink. Taking a previous experimental study as a basis, aluminum heat sinks with two different practical lengths are modeled. The models and the simulation approach are validated by comparing the flat plate heat sink results with the available correlations, and by comparing the finned heat sink results with the experimental data. Natural convection and radiation heat transfer rates from the fronts of the heat sinks heated from the back with a heater are obtained from finite volume computational fluid dynamics simulations. The sensitivities of the heat transfer rates to the geometric parameters are determined. A set of dimensionless correlations for the convective heat transfer rate is suggested. The validated model is used for several upward and downward inclination angles by varying the direction of gravitational acceleration. At small inclinations, it is observed that convection heat transfer rate stays almost the same, even increases slightly for the downward inclinations. At larger angles, the phenomenon is investigated for the purpose of determining the flow structures forming around the heat sink. For the inclination angles of +/- 40 degrees, +/- 10 degrees, +/- 20 degrees, +/- 30 degrees, +/- 45 degrees, +/- 60 degrees, +/- 75 degrees, +/- 80 degrees, +/- 85 degrees, +/- 90 degrees from the vertical, the extent of validity of the obtained vertical case correlation is investigated by modifying the Grashof number with the cosine of the inclination angle. It is observed that the correlation is valid in a very wide range, from -60 degrees (upward) to +80 degrees (downward). It is also observed that the flow separation inside the fin channels of the heat sink is an important phenomenon and determines the validity range of the modified correlation. It is further shown that the correlations are also applicable to all available inclined case data in the literature, verifying both our results and correlations. Since the investigated ranges of parameters are suitable for electronic device cooling, the suggested correlations have a practical use in electronics cooling applications.
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

Suggestions

Natural convection flow of a nanofluid in an enclosure under an inclined uniform magnetic field
Tezer, Münevver; Bozkaya, Canan (2016-01-01)
In this study, the natural convection in a square enclosure filled with water-based aluminium oxide (Al2O3) under the influence of an externally applied inclined magnetic field is considered numerically. The flow is steady, two-dimensional and laminar; the nanoparticles and water are assumed to be in thermal equilibrium. The governing equations are solved in terms of stream function-vorticity-temperature using both the dual reciprocity boundary element method and the finite element method to see the influen...
A correlation for natural convection heat transfer from inclined plate-finned heat sinks
MEHRTASH, Mehdi; Tarı, İlker (2013-03-01)
Steady-state natural convection heat transfer from inclined plate-finned heat sinks to air is numerically investigated by using an experimentally validated model. The heat sinks with parallel arrangement of uniform rectangular cross section plate fins are inclined from the vertical in both forward and backward directions in order to investigate the effect of inclination on convection. Our previously validated numerical model for vertically oriented heat sinks is directly used without changing any model para...
Numerical investigation of natural convection from vertical plate finned heat sinks
Çakar, Kamil Mert; Albayrak, Kahraman; Department of Mechanical Engineering (2009)
The steady-state natural convection from vertically placed rectangular fins is investigated numerically by means of a commercial CFD program called ICEPAK. The effects of geometric parameters of fin arrays on the performance of heat dissipation from fin arrays are examined. In order to simulate the different fin configurations and compare the results with literature, two experimental studies from literature are selected. Optimum fin spacing for both studies are found numerically and compared with experiment...
EXPERIMENTAL AND NUMERICAL STUDY ON HEAT TRANSFER PERFORMANCE OF SQUARE, CYLINDRICAL AND PLATE HEAT SINKS IN EXTERNAL TRANSITION FLOW REGIME
İnci, Aykut Barış; Bayer, Özgür (2019-01-01)
Geometrical optimization of heat sinks with square, cylindrical and plate fins for heat transfer increase is numerically analyzed in transition regime external flow. The relations between the thermal characteristics of fins and boundary conditions such as free-stream velocity are investigated. Experimental studies are performed by using manufacturable fins to validate the numerical model. Heat transfer correlations are derived in order to determine average heat transfer coefficients over a certain range of ...
Performance of rectangular fins on a vertical base in free convection heat transfer
Yazıcıoğlu, Burak; Yüncü, Hafit; Department of Mechanical Engineering (2005)
The steady-state natural convection heat transfer from vertical rectangular fins extending perpendicularly from vertical rectangular base was investigated experimentally. The effects of geometric parameters and base-to-ambient temperature difference on the heat transfer performance of fin arrays were observed and the optimum fin separation values were determined. Two similar experimental set-ups were employed during experiments in order to take measurements from 30 different fin configurations having fin le...
Citation Formats
İ. Tarı, “Natural convection heat transfer from inclined plate-fin heat sinks,” INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, pp. 574–593, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46617.