Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effects of Accelerated Weathering in Polylactide Biocomposites Reinforced with Microcrystalline Cellulose
Date
2016-08-01
Author
Kaynak, Cevdet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
187
views
0
downloads
Cite This
The aim of this study was to reveal effects of accelerated weathering in neat polylactide (PLA) and its biocomposite reinforced with microcrystalline cellulose (MCC); compounded by twin-screw extrusion melt mixing and specimen shaping by injection molding. Weathering conditions were applied via consecutive steps of UV irradiation and humidity in accordance with ISO 4892-3 standards for 200 h. Various characterization techniques and mechanical tests indicated that photolysis, photo-oxidation and hydrolysis were the main degradation mechanisms leading to significant decrease in the molecular weight of PLA via main chain scission. Consequently, except elastic modulus other mechanical properties; strength, ductility and fracture toughness of PLA and PLA/MCC decreased substantially. However, after comparing the mechanical properties of the neat PLA and PLA/MCC biocomposite specimens having 200 h of accelerated weathering, it was concluded that; for the outdoor applications use of PLA/MCC biocomposite (with only 3 wt% MCC) was extremely beneficial compared to using neat PLA. For example, tensile strength is more than 91% beneficial while strain at break ductility is more than 2.7 times beneficial.
Subject Keywords
Poly(Lactic Acid)
,
Composites
,
Degradation
,
Pla
,
Poly(L-Lactide)
,
Behavior
,
Biodegradation
,
Environments
,
Polyesters
,
Disorder
URI
https://hdl.handle.net/11511/47036
Journal
INTERNATIONAL POLYMER PROCESSING
DOI
https://doi.org/10.3139/217.3197
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Effects of Montmorillonite Content and Maleic Anhydride Compatibilization on the Mechanical Behavior of Polylactide Nanocomposites
Sarı, Burcu (2016-08-01)
The aim of this study was to investigate the effects of montmorillonite (MMT) type nanoclay content and maleic anhydride (MA) grafted polylactide (PLA) copolymer compatibilization on the mechanical properties of PLA nanocomposites; compounded by twin-screw extrusion melt-mixing followed with injection molding for shaping of bulk specimens. Successively intercalated and exfoliated structures of the nanocomposites were observed by XRD and TEM analysis, including the chemical interactions by FTIR. Mechanical t...
Consequences of accelerated weathering in polylactide nanocomposites reinforced with halloysite nanotubes
Kaynak, Cevdet (2016-02-01)
The purpose of this study was to explore consequences of accelerated weathering on the behavior of polylactide/halloysite nanotube composites. Nanocomposites were compounded by melt mixing method via a twin-screw extruder while specimens for testing and analyses were shaped by injection molding. Behaviors of the specimens were compared before weathering and after exposure to UV irradiation and humidity steps according to Cycle-C of ISO 4892-3 standards for a total duration of 300h. IR studies revealed that ...
Effect of thermal treatments and palladium loading an hydrogen sorption characteristics of single-walled carbon nanotubes
KOCABAŞ, SEFA; KOPAÇ, TÜRKAN; DOĞU, GÜLŞEN; Doğu, Timur (2008-03-01)
The effects of thermal treatments and palladium loading on sorption characteristics of single-walled carbon nanotube (SWCNT) samples were investigated. The thermal treatment experiments were carried out in a temperature range of 300-800 degrees C. The sorption characteristics of nitrogen and hydrogen on the original, heat treated and the palladium loaded samples were investigated. Analyzing the nitrogen adsorption isotherms on these samples at 77.4 K, the highest specific surface area of 2230 m(2)/g was obt...
Influences of three different ethylene copolymers on the toughness and other properties of polylactide
MEYVA, YELDA; Kaynak, Cevdet (Informa UK Limited, 2016-01-01)
The aim of this study was to investigate influences of three different ethylene copolymers on the toughness and other properties of very brittle biopolymer PLA (polylactide). For this aim, PLA was melt blended by twin-screw extruder with various amounts of ethylene vinyl acetate (EVA), ethylene-methyl-acrylate (EMA) and ethylene-n-butyl acrylate-glycidyl-methacrylate (EBA-GMA). SEM and DSC analyses indicated that these ethylene copolymers were thermodynamically immiscible with phase separation in the form o...
Effects of micro-nano titania contents and maleic anhydride compatibilization on the mechanical performance of polylactide
CAN, ULAŞ; Kaynak, Cevdet (Wiley, 2020-02-01)
The first aim of this study was to compare influences of various contents of the micro- (200 nm) and nano (50 nm)-sized titania (TiO2) particles especially on the mechanical performance of the polylactide (PLA) biopolymer. Micro- and nano-composites were prepared by twin-screw extruder melt mixing, while the specimens were shaped by compression molding. Scanning electron microscope analyses and mechanical tests revealed that due to the most efficient uniform distribution in the matrix, the best improvements...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Kaynak, “Effects of Accelerated Weathering in Polylactide Biocomposites Reinforced with Microcrystalline Cellulose,”
INTERNATIONAL POLYMER PROCESSING
, pp. 410–422, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47036.