Temperature compensation of a capacitive mems accelerometer by using a mems oscillator

This study reports a temperature compensation method for a capacitive MEMS accelerometer by using a MEMS double-ended-tuning-fork (DETF) resonator integrated with the accelerometer structure on the same die. The proposed method utilizes the frequency information of the clamped-clamped DETF resonator which is oscillating in a closed-loop operation. In order to compensate the temperature dependence of the accelerometer output, frequency drift of the DETF resonator against changing temperature is used, i. e., the resonator frequency is used as the temperature data for compensation purposes. On-chip integration of two sensors allows precise temperature sensing abilities by removing the thermal lag between the DETF resonator and the accelerometer. Tests are held in the -20 degrees C and 60 degrees C range by operating both sensors simultaneously in a temperature-controlled oven. The measurement results indicate temperature coefficient of frequency (TCf) of 480 ppm/K for the integrated resonator and temperature dependence of 1,164 mu g/K for the accelerometer output, which is decreased to 1.4 mu g /K after temperature compensation. Improved noise performances indicate the bias instability of 30 g and the velocity random walk of 24 mu g/sqrt(Hz) with the removal of the temperature ramp (after 30 seconds) in Allan-deviation plot.


Integrated Temperature Sensor for Temperature Compensation of Inertial Sensors
Kaya, Onurcan; Azgın, Kıvanç (2019-01-01)
This study reports a novel dual-resonator integrated temperature sensor for temperature compensation on inertial sensors. The proposed temperature sensor eliminates the need of a TCXO or OCXO time base for accurate frequency-based temperature determination. Moreover, the sensor structure eliminates the effects of aging related shifts of the nominal frequency of counter reference. In addition, it is capable of short-term error mitigation, improving bias stability of MEMS based inertial sensors.
Compensation of Temperature and Acceleration effects on MEMS Gyroscope
Ali, Muhammad (2016-01-16)
This paper shows temperature and acceleration effects on Micro-Electro-Mechanical-Systems (MEMS) gyroscope and a practical solution is presented to mitigate effect of these errors using different methods (Polynomial Curve fitting and Neural Networks). Compensation is performed on the output bias drift data acquired from different MEMS gyroscopes. Performance of compensation techniques is also presented in this study. This paper presents novelty of integrated compensation for both factors (temperature and ac...
Analysis and Elimination of the Capacitive Feedthrough Current on Electrostatically Actuated and Sensed Resonance-Based MEMS Sensors
Kangul, Mustafa; Aydin, Eren; Gokce, Furkan; Zorlu, Ozge; Külah, Haluk (2017-12-01)
This paper presents the investigation of two different capacitive feedthrough current elimination methods with an analysis of the effect of the capacitive feedthrough current on the resonance characteristics of electrostatically actuated and sensed resonant MEMS sensors. Electrostatically actuated and sensed resonators have various applications, such as accelerometers, gyroscopes, mass sensors, and temperature sensors. In most of these applications, as sensitivity increases, gain decreases. The capacitive f...
Design, fabrication, and characterization of micro thermal actuators
Gülcüler, Buğrahan; Azgın, Kıvanç; Department of Mechanical Engineering (2020-11)
This thesis presents the design, fabrication, and characterization of V-Type thermal actuators, which will be used in an actuator system that is planned to be a tensile and compressive test setup to characterize the expandible cells by the help of double- ended tuning fork resonators as a force sensing mechanism. Actuators are serially packed to increase the generated force by them while maintaining the same deflection values. They have been connected to the overall system by springs to create a force on te...
Frequency Modulated Raman Spectroscopy
Greco, Silvio; Dal Zilio, Simone; Bek, Alpan; Lazzarino, Marco; Naumenko, Denys (2018-02-01)
The coupling of plasmonic and mechanical properties at the nanoscale is of great potential for the development of next generation devices capable to detect weak forces, mass changes, minute displacements and temperature induced effects. Both the transduction of mechanical motion to the scattered light fields in term of polarization or intensity modulation and plasmon-driven mechanical oscillations have already been demonstrated. Quasi static tunable hot spots have recently been designed and applied to surfa...
Citation Formats
T. Kose, K. Azgın, and T. Akın, “Temperature compensation of a capacitive mems accelerometer by using a mems oscillator,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47129.