Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Maximum length of integral bridges supported on steel H-piles driven in sand
Date
2003-01-01
Author
Dicleli, Murat
Albhaisi, Suhail M.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
68
views
0
downloads
Cite This
This paper presents design recommendations for the maximum length of integral bridges built on sand. The maximum length limits for integral bridges is determined as a function of the ability of steel H-piles supporting the abutments to sustain thermal-induced cyclic lateral displacements and the flexural capacity of the abutment. First, steel H-pile sections that are capable of sustaining large inelastic deformations under monotonic loading are determined. Then, a low-cycle fatigue damage model is employed to determine the maximum cyclic deformations that such piles can sustain. Next, the nonlinear behavior of the piles and soil-bridge interaction effects are implemented in nonlinear structural models of two typical integral bridges. Static pushover analyses of these bridges are conducted to study the effect of various geometric, structural and geotechnical parameters on the performance of integral bridges subjected to uniform temperature variations. Using the pushover analyses results, design guidelines are developed to enhance and determine the maximum length of integral bridges. It is recommended that the maximum lengths of concrete integral bridges be Limited to 190 m in cold climates and 240 m in moderate climates and that of steel integral bridges are limited to 100 m in cold climates and 160 m in moderate climates.
Subject Keywords
Civil and Structural Engineering
URI
https://hdl.handle.net/11511/47988
Journal
Engineering Structures
DOI
https://doi.org/10.1016/s0141-0296(03)00116-0
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
A Methodology for Optimal Layout Design of Pressure Cells for Concrete Faced Rockfill Dams
Arı, Onur; Yanmaz, Ali Melih (Springer Science and Business Media LLC, 2018-08-01)
In this study, a methodology for optimal layout design of pressure cells for concrete faced rockfill dams is developed. A representative dimensionless stress distribution model was formed for obtaining the magnitudes and location of different stress zones as a function of dam height. This information enabled development of a procedure for proper location and the number of pressure cells throughout the dam body. A vertical placement algorithm based on error minimization was first developed, which is followed...
Simplified model for computer-aided analysis of integral bridges
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2000-08-01)
This paper presents a computer-aided approach for the design of integral-abutment bridges. An analysis procedure and a simplified structure model are proposed for the design of integral-abutment bridges considering their actual behavior and load distribution among their various components. A computer program, for the analysis of integral-abutment bridges, has been developed using the proposed analysis procedure and structure model. The program is capable of analyzing an integral-abutment bridge for each con...
Lifetime Performance Analysis of Existing Reinforced Concrete Bridges. I: Theory
Akgül, Ferhat (American Society of Civil Engineers (ASCE), 2005-06-01)
In this first part of a two-part paper, a general methodology for lifetime performance analysis of existing reinforced concrete bridges is presented. The framework for the methodology is established by identifying four distinct categories: limit state equations, random variables, deterministic parameters, and constant coefficients. The limit state equations are derived by strictly adhering to the load and capacity formulas and requirements set forth in AASHTO specifications. Generality is pursued by establi...
Integral Abutment-Backfill Behavior on Sand Soil-Pushover Analysis Approach
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2005-05-01)
This paper presents a study on the behavior of the abutment-backfill system under positive thermal variation in integral bridges built on sand. A structural model of a typical integral bridge is built, considering the nonlinear behavior of the piles and soil-bridge interaction effects. Static pushover analyses of the bridge are conducted to study the effect of various geometric, structural, and geotechnical parameters on the performance of the abutment-backfill system under positive thermal variations. The ...
Reduction of scouring depth by using inclined piers
Bozkuş, Zafer (Canadian Science Publishing, 2010-12-01)
The aim of this experimental study is to examine the effect of inclination of dual bridge piers on scour depth under clear-water conditions for various uniform flow depths. Duration of 4 h was used in the experiments for each run. Scour depths were measured at four different points around the piers. The depths of local scour around inclined piers were found to be substantially smaller than the scour depths around vertical piers. Dimensional and nondimensional curves were developed and presented to show the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Dicleli and S. M. Albhaisi, “Maximum length of integral bridges supported on steel H-piles driven in sand,”
Engineering Structures
, pp. 1491–1504, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47988.