Immobilization of invertase in conducting polypyrrole polytetrahydrofuran graft polymer matrices

1999-06-24
Kizilyar, N
Akbulut, Ural
Toppare, Levent Kamil
Ozden, MY
Yagci, Y
Four different polypyrrole/polytetrahydrofuran/invertase electrodes were constructed by the entrapment of invertase in conducting polymer matrices via electropolymerization. Immobilization of the enzyme was achieved by the application of a 1.1 V constant potential to a platinum electrode for 30 min in a solution containing 0.01 M pyrrole, 0.4 mg/ml invertase and 0.4 mg/ml sodium dodecyl sulphate. Performance of each electrode was optimized by examining the effects of pH and temperature on the properties of the electrodes. The changes in the maximum velocity of the reaction and variation of Michaelis-Menten constant upon immobilization were investigated. The enzyme immobilized in those matrices retained its activity for several months. (C) 1999 Elsevier Science S.A. All rights reserved.
SYNTHETIC METALS

Suggestions

Immobilization of invertase in functionalized copolymer matrices
Erginer, Reyhan; Toppare, Levent Kamil; Alkan, Selmiye; Bakir, Ufuk (Elsevier BV, 2000-10)
In this study, immobilization of invertase on functionalized polymer electrodes constructed with pyrrole-capped polyazotetrahydrofuran and polytetrahydrofuran-block-polystyrene copolymer matrices was performed. Immobilization in these enzyme electrodes was carried out by file entrapment of the enzyme in conducting polymer matrices during electrochemical polymerization of pyrrole. Sodium dodecyl sulphate was used as the supporting electrolyte in the preparation of enzyme electrodes. The effects of temperatur...
Immobilization of yeast cells in several conducting polymer matrices
Balci, Z; Akbulut, Ural; Toppare, Levent Kamil; Alkan, S; Bakir, U; Yagci, Y (2002-01-01)
Immobilization of yeast cells (Saccharomyces cerevisiae) in different polymer matrices was performed by constant potential electrolysis. These matrices were polypyrrole (PPy); poly(methyl methacrylate)/polypyrrole (,PMMA/PPy) and thiophene-capped poly(methyl methacrylate)/ polypyrrole (TPMMA/PPy). The characterization of PMMA/PPy copolymer was achieved by Fourier-transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM). The invertase activity of...
Immobilization of invertase in conducting polymer matrices
Selampinar, F; Akbulut, Ural; Ozden, MY; Toppare, Levent Kamil (1997-09-01)
This paper reports a novel approach in the electrode immobilization of an enzyme, invertase, by electrochemical polymerization of pyrrole in the presence of enzyme. The polypyrrole/invertase and polyamide/polypyrrole/invertase electrodes were constructed by the entrapment of enzyme in conducting matrices during electrochemical polymerization of pyrrole. This study involves the preparation and characterization of polypyrrole/invertase and polyamide/polypyrrole/invertase electrodes under conditions compatible...
Conducting polymer composites of polypyrrole and polyimide
Selampinar, F; Akbulut, Ural; Toppare, Levent Kamil (1997-01-01)
A conducting composite of polypyrrole with a polyimide as the insulating matrix polymer was prepared via electrochemical methods. The characterization of the composite was done by FTIR, SEM and TGA studies. Conductivity and solubility studies together with spectroscopic methods reveal that a chemical interaction between the two polymers exists.
Immobilization of yeast cells in acrylamide gel matrix
Hasirci, V.N.; Alaeddinoglu, G.; Aykut, Gül (Elsevier BV, 1988-3)
Entrapment of yeast cells in a three-dimensional polymer matrix was achieved, and various properties of the polymer matrix as well as the invertase activity of the yeast cells were studied. When the matrix was highly cross-linked or synthesized from concentrated polymer solutions, its swelling ratio decreased. Invertase activity was found to increase with water content of the matrix. Cell content of the gel was found to affect adversely enzyme activity. The enzyme was found to retain its activity after seve...
Citation Formats
N. Kizilyar, U. Akbulut, L. K. Toppare, M. Ozden, and Y. Yagci, “Immobilization of invertase in conducting polypyrrole polytetrahydrofuran graft polymer matrices,” SYNTHETIC METALS, pp. 45–50, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48440.