Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Immobilization of yeast cells in acrylamide gel matrix
Date
1988-3
Author
Hasirci, V.N.
Alaeddinoglu, G.
Aykut, Gül
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
210
views
0
downloads
Cite This
Entrapment of yeast cells in a three-dimensional polymer matrix was achieved, and various properties of the polymer matrix as well as the invertase activity of the yeast cells were studied. When the matrix was highly cross-linked or synthesized from concentrated polymer solutions, its swelling ratio decreased. Invertase activity was found to increase with water content of the matrix. Cell content of the gel was found to affect adversely enzyme activity. The enzyme was found to retain its activity after seven runs with the same sample.
Subject Keywords
Biophysics
,
Mechanics of Materials
,
Bioengineering
,
Biomaterials
,
Ceramics and Composites
URI
https://hdl.handle.net/11511/51924
Journal
Biomaterials
DOI
https://doi.org/10.1016/0142-9612(88)90117-2
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Immobilization of glucose oxidase in poly(2-hydroxyethyl methacrylate) membranes
Arica, Y.; Hasirci, V.N.; Arica, Yakup (Elsevier BV, 1987-11)
Glucose oxidase (GOD) was immobilized in a poly(2-hydroxyethyl methacrylate) (HEMA) membrane through matrix entrapment in order to investigate the effect of various parameters (e.g. concentration of ingredients, temperature, repeated interaction with glucose and shelf storage) on the activity of the enzyme. Permeability of the membrane to a model permeant was tested and SEMs were obtained. It was observed that upon immobilization the affinity of GOD towards glucose was substantially decreased, and increasin...
IMMOBILIZATION OF ALPHA-AMYLASE INTO PHOTOGRAPHIC GELATIN BY CHEMICAL CROSS-LINKING
BAYRAMOGLU, Z; Akbulut, Ural; SUNGUR, S (Elsevier BV, 1992-01-01)
Alpha-amylase was immobilized into photographic gelatin by chemical cross-linking with chromium (III) acetate and chromium (III) sulphate. Cellulose triacetate film strips, enabled simple handling when coated with an alpha-amylase-gelatin mixture, accomplishing a high degree of durability during consecutive immersions into reaction media. The optimum conditions for pH, substrate concentration, temperature, incubation time and storing conditions of free and immobilized alpha-amylase were determined. The effe...
STUDIES ON IMMOBILIZATION OF UREASE IN GELATIN BY CROSS-LINKING
SUNGUR, S; ELCIN, YM; Akbulut, Ural (Elsevier BV, 1992-01-01)
Urease enzyme was immobilized in photographic gelatin by chemical cross-linking using formaldehyde, glutaraldehyde and chromium (III) acetate. The effects of enzyme and cross-linker concentrations, temperature, incubation time and pH on urea hydrolysis were investigated. Effect of reuse on the activity of immobilized enzyme was also studied. Glutaraldehyde (0.004 M) was the most suitable cross-linker; relative activities within 2.5 months after 24 reuses were stable (about 78%).
Immobilization of Invertase in Copolymer of 2,5-Di(thiophen-2-yl)-1-p-Tolyl-1H-Pyrrole with Pyrrole
Celebi, Selin; Ibibikcan, Esin; Kayahan, Senem; Yigitsoy, Basak; Toppare, Levent Kamil (Informa UK Limited, 2009-01-01)
Immobilization of invertase in conducting copolymer matrix of 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole with pyrrole (poly(DDTP-co-Py)) was achieved via electrochemical polymerization. Kinetic parameters, Michaelis-Menten constant, Km and the maximum reaction rate, Vmax were investigated. Operational stability and temperature optimization of the enzyme electrodes were also examined. Immobilized invertase reveals maximum activity at 50 degrees C and; pH 8 and pH 4 for two copolymer matrices. Although the sa...
Immobilization of yeast cells in several conducting polymer matrices
Balci, Z; Akbulut, Ural; Toppare, Levent Kamil; Alkan, S; Bakir, U; Yagci, Y (2002-01-01)
Immobilization of yeast cells (Saccharomyces cerevisiae) in different polymer matrices was performed by constant potential electrolysis. These matrices were polypyrrole (PPy); poly(methyl methacrylate)/polypyrrole (,PMMA/PPy) and thiophene-capped poly(methyl methacrylate)/ polypyrrole (TPMMA/PPy). The characterization of PMMA/PPy copolymer was achieved by Fourier-transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM). The invertase activity of...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
V. N. Hasirci, G. Alaeddinoglu, and G. Aykut, “Immobilization of yeast cells in acrylamide gel matrix,”
Biomaterials
, pp. 168–172, 1988, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51924.