Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Study of high radio frequency plasma discharge effects on carbon fiber using Raman spectroscopy
Date
2014-02-15
Author
Akbar, D.
Erözbek Güngör, Ümmügül
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
190
views
0
downloads
Cite This
The goal of this research is to evaluate the potential of single and dual high RF reactors for the treatment of carbon fiber by Raman and FT-IR spectroscopies. Unsized poly-acrylonitrile (PAN) carbon fiber was treated with single high frequency (40.68 MHz) and double radio frequency capacitively coupled plasma (RF-CCP) discharge reactor (40.68/2.1 MHz) using pure nitrogen gas. The changes in the structure of the carbon fiber surfaces due to the variations of the D and G band intensity ratio (I-D/I-G), crystallite size (L-a) and Full-Width-at-Half-Maximum with plasma power, gas pressure, and treatment-time were described. It was found that the disorder of carbon fiber increases (the I-D/I-G ratio increased) with increasing high RF power and the process time. In contrast, the degree of the order (L-a) increases with increasing the gas pressure. It was also observed that the degree of graphitization accrued due to the shift of the D and G bands to the lower wave number. And, from FT-IR result, it was found that the C=C bond disappeared, and only carbon to nitrogen double and triple bonds are available by increasing pressure and RF power. In dual RF reactor, at high pressure and long process time, the disorder values (I-D/I-G) decrease with the increase of low frequency power. Furthermore, this mode has faster effects on the surface of carbon fiber than single RF mode.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Surfaces, Coatings and Films
,
Surfaces and Interfaces
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/48587
Journal
SURFACE & COATINGS TECHNOLOGY
DOI
https://doi.org/10.1016/j.surfcoat.2013.12.032
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Combined effects of ALS and SLS on Al2O3 reinforced composite nickel coatings
Yılmaz, Olgun; Karakaya, I. (Informa UK Limited, 2020-05-03)
The mechanical and tribological properties of electrochemical coatings can be enhanced by the embedded second phase particles to nickel matrix. Two different anionic surfactants sodium dodecyl sulfate and ammonium lignosulfonate were used together to adjust the wetting conditions and provide the suspension of Al2O3 particles in a nickel sulfamate electrolyte in this study. The effects of current density and amounts of the two surfactants on wear rate, coefficient of friction, and hardness were studied. It w...
Effect of low-energy electron irradiation on (Bi, Pb)-2212 superconductors
Ogun, SE; Goktas, H; Ozkan, H; Hasanlı, Nızamı (Elsevier BV, 2005-06-22)
The effect of low-energy electron irradiation on the properties of the Bi-based superconductors is studied. Two sets of polycrystalline (Bi, Pb)-2212 samples were synthesized by heating the appropriate mixtures of powders at 840 degrees C for 100 h, then quenched or furnace cooled to room temperature. The samples were irradiated by low-energy (1-10 keV), pulsed (20 ns) electron beam up to a dose of 6.2 x 10(15) cm(-2). X- ray diffraction patterns, resistance-temperature behaviours, critical currents, and mi...
Physical Characterization of Inclusion Complexes of Triphenyl Phosphate and Cyclodextrins in Solution.
Zhang, N; Zane, CP; Chen, Y; Yıldırım, Erol; Hinks, D; Tonelli, AE; Vinueza, NR; Pasquinelli, MA (American Chemical Society (ACS), 2020-01-16)
The goal of this work is to provide physical insights into the formation and stability of inclusion complexes (ICs) in aqueous solution between cyclodextrins (CDs) and a common flame retardant, triphenyl phosphate (TPP). Quantum chemistry calculations reveal the possible energetically favorable geometries of TPP in their 1:1 IC form with α-, β-, and γ-CDs as well as their associated complexation, conformational, and interaction energies. High-resolution mass spectrometry (MS) and tandem MS were used with el...
Enhancement of H-2 Storage in Carbon Nanotubes via Doping with a Boron Nitride Ring
Onay, Aytun Koyuncular; Erkoç, Şakir (American Scientific Publishers, 2009-04-01)
Hydrogen storage capacity of carbon nanotubes with different chirality have been investigated by performing quantum chemical methods at semiempirical and DFT levels of calculations. It has been found that boron nitrite substitutional doping increases the hydrogen storage capacity of carbon nanotubes.
Kinetic study of the reaction between hydroxyl-terminated polybutadiene and isophorone diisocyanate in bulk by quantitative FTIR spectroscopy
Kincal, D; Özkar, Saim (Wiley, 1997-12-05)
A kinetic study of the reaction between a hydroxyl-terminated polybutadiene (HTPB) and isophorone diisocyanate (IPDI) was carried out in the bulk state by using quantitative Fourier transform infrared(FTIR) spectroscopy. The reaction is shown to obey a second-order rate law, being first order in both the HTPB and IPDI concentrations. The activation parameters obtained from the evaluation of kinetic data are Delta H-double dagger = 41.1 +/- 0.4 kJ mol, Delta S-double dagger = -198 +/- 2 J K-1 mol(-1) and E-a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Akbar and Ü. Erözbek Güngör, “Study of high radio frequency plasma discharge effects on carbon fiber using Raman spectroscopy,”
SURFACE & COATINGS TECHNOLOGY
, pp. 233–242, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48587.