Development of electrically conductive porous silk fibroin/CNF scaffolds.

2020-10-22
Tufan, Yiğithan
Garipcan, B
Ercan, B
Tissue engineering applications typically require 3D scaffolds which provide requisite surface area for cellular functions, while allowing nutrient, waste and oxygen transportation with the surrounding tissues. Concurrently, scaffolds should ensure sufficient mechanical properties to provide mechanically stable frameworks under physiologically relevant stress levels. In the meantime, electrically conductive platforms are also desired for the regeneration of specific tissues, where electrical impulses are transmitted throughout the tissue for proper physiological functioning. Towards this goal, carbon nanofibers (CNFs) were incorporated into silk fibroin (SF) scaffolds whose pore size and porosity were controlled during salt leaching process. In our methodology, CNFs were dispersed in SF owing to the hydrogen bond forming ability of hexafluoro-2-propanol (HFIP), a fluoroalcohol used as a solvent for silk fibroin. Results showed enhanced electrical conductivity and mechanical properties upon the incorporation of CNFs into the SF scaffolds, while metabolic activities of cells cultured on SF/CNF nanocomposite scaffolds were significantly improved via optimizing CNF content, porosity and pore size range of the scaffolds. Specifically, SF/CNF nanocomposite scaffolds having electrical conductivities as high as 0.023 S/cm and tangent modulus values of 260±30 kPa, while having porosity as high as 78% and pore size of 376±53 µm were fabricated -for the first time- in literature. Furthermore, ~34% increase in the wettability of SF was achieved upon the incorporation of 10% CNF, which provided enhanced fibroblast spreading on scaffold surfaces.
Biomedical materials (Bristol, England)

Suggestions

Development of electrically conductive porous silk fibroin/carbon nanofiber scaffolds
Tufan, Yiğithan; Ercan, Batur; Department of Metallurgical and Materials Engineering (2020-8)
Tissue engineering applications typically require porous scaffolds which provide requisite surface area for cellular functions, while allowing nutrient, waste and oxygen transport with the surrounding tissues. Concurrently, scaffolds should ensure sufficient mechanical properties to provide mechanically stable frameworks under physiologically relevant stress levels. Furthermore, electrically conductive platforms are also desired for the regeneration of specific tissues, where electrical impulses are transmi...
Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization
Kayabolen, Alisan; Keskin, Dilek; Aykan, Andac; Karslioglu, Yildirim; Zor, Fatih; Tezcaner, Ayşen (IOP Publishing, 2017-06-23)
Adipose tissue engineering is a promising field for regeneration of soft tissue defects. However, vascularization is needed since nutrients and oxygen cannot reach cells in thick implants by diffusion. Obtaining a biocompatible scaffold with good mechanical properties is another problem. In this study, we aimed to develop thick and vascularized adipose tissue constructs supporting cell viability and adipose tissue regeneration. Hydrogels were prepared by mixing rat decellularized adipose tissue (DAT) and si...
Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering
Türkkan, Sibel; Atila, Deniz; Akdağ, Akın; Tezcaner, Ayşen (Wiley, 2018-10-01)
In this study, novel porous three-dimensional (3D) scaffolds from silk fibroin (SF) and functionalized (amidated and oxidized) citrus pectin (PEC) were developed for skin tissue engineering applications. Crosslinking was achieved by Schiff's reaction in borax presence as crosslinking coordinating agent and CaCl2 addition. After freeze-drying and methanol treatment, plasma treatment (10 W, 3 min) was applied to remove surface skin layer formed on scaffolds. 3D matrices had high porosity (83%) and interconnec...
Preparation and characterization of chitosan-gelatin/hydroxyapatite scaffolds for hard tissue engineering approaches
Işıklı, Cansel; Hasırcı, Nesrin; Department of Biomedical Engineering (2010)
Hard tissue engineering holds the promise of restoring the function of failed hard tissues and involves growing specific cells on extracellular matrix (ECM) to develop „„tissue-like” structures or organoids. Chitosan is a linear amino polysaccharide that can provide a convenient physical and biological environment in tissue regeneration attempt. To improve chitosan‟s mechanical and biological properties, it was blended with another polymer gelatin. 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-...
Cellulose acetate-gelatin-coated boron-bioactive glass biocomposite scaffolds for bone tissue engineering
Rad, Reza Moonesi; ALSHEMARY, AMMAR ZEIDAN GHAILAN; Evis, Zafer; Keskin, Dilek; Tezcaner, Ayşen (IOP Publishing, 2020-11-01)
In this study, we aimed to prepare and characterize porous scaffolds composed of pure and boron oxide (B2O3)-doped bioactive glass (BG) that were infiltrated by cellulose acetate-gelatin (CA-GE) polymer solution for bone tissue engineering applications. Composite scaffolds were cross-linked with glutaraldehyde after polymer coating to protect the structural integrity of the polymeric-coated scaffolds. The impact of B(2)O(3)incorporation into BG-polymer porous scaffolds on the cross-sectional morphology, por...
Citation Formats
Y. Tufan, B. Garipcan, and B. Ercan, “Development of electrically conductive porous silk fibroin/CNF scaffolds.,” Biomedical materials (Bristol, England), 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68939.