Kanser hedefleme ve terapi için 2-deoksi-D-gilikoz (2-DG)-etiketli kobalt ferrit (CoFe2O4)manyetik nanoparçacıklar

Download
2014
In this study, strong magnetic featured silica coated Cobalt ferrite (CoFe204) nanoparticles were labeled with 2-deoxy glucose (2-DG) for better targetting to cancer cells and the molecular effects of these prepared magnetic nanoparticles (MNPs) were investigated in cancer cell lines. In this study, in vitro characterization of 2-DG labelled MNPs were carried out in breast cancer cells (MDA-MB-231 breast cancer and normal cell MCF10A), and cellular uptake mechanisms, genotoxicity, intracellular levels of oxidative stress and stress-related autophagic, apoptotic pathways, mRNA expression profiles of some key genes in different biological pathways were studied. Further development of multifunctional different carrier systems for cancer teraphies with nanotechnological view is one of the popular and privileged area. Thus, the information obtained in this study will contribute to create new therapeutic strategies and to set ground to new studies.

Suggestions

Egsoz gazındaki hidrokarbon, karbon monoksit ve azot oksit (NO) bileşiklerinin üç yollu katalitik konverter ile arıtılması
Gerçeker, Duygu; Önal, Işık; Civan, Aylin(2014)
In this study, strong magnetic featured silica coated Cobalt ferrite (CoFe204) nanoparticles were labeled with 2-deoxy glucose (2-DG) for better targetting to cancer cells and the molecular effects of these prepared magnetic nanoparticles (MNPs) were investigated in cancer cell lines. In this study, in vitro characterization of 2-DG labelled MNPs were carried out in breast cancer cells (MDA-MB-231 breast cancer and normal cell MCF10A), and cellular uptake mechanisms, genotoxicity, intracellular levels of ox...
2-Amino-2-deoxy-glucose conjugated cobalt ferrite magnetic nanoparticle (2DG-MNP) as a targeting agent for breast cancer cells
Asik, Elif; Aslan, Tugba Nur; Volkan, Mürvet; Güray, Nülüfer Tülün (2016-01-01)
In this study, 2-amino-2-deoxy-glucose (2DG) was conjugated to COOH modified cobalt ferrite magnetic nanoparticles (COOH-MNPs), which were designed to target tumor cells as a potential targetable drug/gene delivery agent for cancer treatment. According to our results, it is apparent that, 2DG labeled MNPs were internalized more efficiently than COOH-MNPs under the same conditions in all cell types (MDA-MB-231 and MCF-7 cancer and MCF-10A normal breast cells) (p < 0.001). Moreover, the highest amount of upta...
The Synthesis and characterization of doxorubicin and bortezomib loaded magnetic nanoparticles for targeting tumor cells
Ünsoy, Gözde; Gündüz, Ufuk; Budak, Güven Gürer; Department of Biotechnology (2013)
Chitosan superparamagnetic nanoparticles, loaded with Doxorubicin and Bortezomib were synthesized for treatment of breast and cervical cancers by targeted drug delivery. In vitro cytotoxicity analyses revealed that the efficacy of drugs was highly increased when applied as loaded on nanoparticles. Chitosan superparamagnetic iron oxide nanoparticles (CSMNPs) were in-situ synthesized at different sizes by ionic crosslinking method. The characterization of nanoparticles was performed by XRD, XPS/ESCA, FTIR, TE...
Synthesis and characterization of polymeric magnetic nanoparticles loaded by gemcitabine /
Parsian, Maryam; Gündüz, Ufuk; Tezcaner, Ayşen; Department of Biotechnology (2014)
In this study, different types of magnetic nanoparticles were synthesized for treatment of breast cancer by targeted drug delivery. Polyamidoamine (PAMAM) dendrimer, Chitosan (CS) and Polyhydroxybutyrate (PHB) coated magnetic nanoparticles were prepared and loaded with Gemcitabine. The loading efficiency of drug for various half generations of dendrimer coated magnetic nanoparticles (DcMNPs), Chitosan coated magnetic nanoparticles (CSMNPs) and Polyhydroxybutyrate magnetic nanoparticles (PHB-MNPs) were inves...
Targeted delivery of CPG-oligodeoxynucleotide to breast cancer cells by poly-amidoamine dendrimer-modified magnetic nanoparticles
Taghavi Pourianazar, Negar; Gündüz, Ufuk; Gündüz, Güngör; Department of Biotechnology (2016)
One major application of nanotechnology in cancer treatment involves designing nanoparticles to deliver drugs, oligonucleotides, and genes to cancer cells. Nanoparticles should be engineered so that they could target and destroy tumor cells with minimal damage to healthy tissues. This research aims to develop an appropriate and efficient nanocarrier, having the ability of interacting with and delivering CpG-oligodeoxynucleotides (CpG-ODNs) to tumor cells. CpG-ODNs activate Toll-like receptor 9 (TLR9), which...
Citation Formats
E. Işık, N. T. Güray, and M. Volkan, “Kanser hedefleme ve terapi için 2-deoksi-D-gilikoz (2-DG)-etiketli kobalt ferrit (CoFe2O4)manyetik nanoparçacıklar,” 2014. Accessed: 00, 2020. [Online]. Available: https://app.trdizin.gov.tr/publication/project/detail/TVRRMU9ETXo.