Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Epileptic seizures induce structural and functional alterations on brain tissue membranes
Date
2014-12-01
Author
Turker, Sevgi
Severcan, Mete
İLBAY, GÜL
Severcan, Feride
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
Epilepsy is characterized by disruption of balance between cerebral excitation and inhibition, leading to recurrent and unprovoked convulsions. Studies are still underway to understand mechanisms lying epileptic seizures with the aim of improving treatment strategies. In this context, the research on brain tissue membranes gains importance for generation of epileptic activities. In order to provide additional information for this field, we have investigated the effects of pentylenetetrazol-induced and audiogenetically susceptible epileptic seizures on structure, content and function of rat brain membrane components using Fourier transform infrared (FT-IR) spectroscopy. The findings have shown that both two types of epileptic seizures stimulate the variations in the molecular organization of membrane lipids, which have potential to influence the structures in connection with functions of membrane proteins. Moreover, less fluid lipid structure and a decline in content of lipids obtained from the ratio of CH3 asym/lipid, CH2 asym/lipid, C=O/lipid, and olefinic=CH/lipid and the areas of the PO2 symmetric and asymmetric modes were observed. Moreover, based on IR data the changes in the conformation of proteins were predicted by neural network (NN) analysis, and displayed as an increase in random coil despite a decrease in beta sheet. Depending on spectral parameters, we have successfully differentiated treated samples from the control by principal component analysis (PCA) and cluster analysis.
Subject Keywords
PTZ
,
Audiogenetically susceptible WAG/Rij rat
,
FT-IR spectroscopy
,
Brain tissue membrane
,
Neural network
,
PCA
URI
https://hdl.handle.net/11511/51570
Journal
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
DOI
https://doi.org/10.1016/j.bbamem.2014.08.025
Collections
Department of Biology, Article