Impurity-bound electron in quantum well-heterostructure-type systems

Özdinçer, Uğur
Erçelebi, Atilla
The ground-state binding energy of a hydrogenic impurity is retrieved as a function of the effective dimensionality in a quantum well confinement. The geometry we use is a rectangular box, the dimensions of which can be tuned so as to yield a unified description interpolating between the bulk, the quasi-two- and one-dimensional limits as well as the quantum well box case.
Journal of Physics and Chemistry of Solids


Numerical evidence of spontaneous division of dissipative solitons in a planar gas discharge-semiconductor system
Rafatov, İsmail (AIP Publishing, 2019-09-01)
This work deals with the formation of patterns of spatially localized solitary objects in a planar semiconductor gas-discharge system with a high Ohmic electrode. These objects, known as dissipative solitons, are generated in this system in the form of self-organized current filaments, which develop from the homogeneous stationary state by the Turing bifurcation. The numerical model reveals, for the first time, evidence of spontaneous division of the current filaments in this system, similar to that observe...
Energy band gap and oscillator parameters of Ga4Se3S single crystals
Qasrawi, A. F.; Hasanlı, Nızamı (Elsevier BV, 2007-06-01)
The optical properties of the Bridgman method grown Ga4Se3S crystals have been investigated by means of room temperature, transmittance and reflectance spectral analysis. The optical data have revealed an indirect allowed transition band gap of 2.08 eV. The room temperature refractive index, which was calculated from the reflectance and transmittance data, allowed the identification of the dispersion and oscillator energies, static dielectric constant and static refractive index as 21.08 and 3.85 eV, 6.48 a...
YILDIRIM, T; Erçelebi, Ayşe Çiğdem (IOP Publishing, 1991-06-17)
The ground state of the Frohlich polaron is retrieved as a function of the degree of confinement in a three-dimensional quantum well with tunable barrier potentials. A unified overview of the binding energy interpolating between all possible confinement geometries is provided within the framework of the second-order perturbation theory.
Hamilton-Jacobi theory of discrete, regular constrained systems
Güler, Y. (Springer Science and Business Media LLC, 1987-8)
The Hamilton-Jacobi differential equation of a discrete system with constraint equationsG α=0 is constructed making use of Carathéodory’s equivalent Lagrangian method. Introduction of Lagrange’s multipliersλ˙α as generalized velocities enables us to treat the constraint functionsG α as the generalized momenta conjugate toλ˙α. Canonical equations of motion are determined.
Short-range correlations in a one-dimensional electron gas
Tas, M; Tomak, Mehmet (American Physical Society (APS), 2003-06-15)
We use the Singwi-Sjolander-Tosi-Land (SSTL) approximation to investigate the short-range correlations in a one-dimensional electron gas. We find out that the SSTL approximation satisfies the compressibility sum rule somewhat better than the more widely used Singwi-Tosi-Land-Sjolander approximation in the case of a one-dimensional electron gas.
Citation Formats
U. Özdinçer and A. Erçelebi, “Impurity-bound electron in quantum well-heterostructure-type systems,” Journal of Physics and Chemistry of Solids, pp. 769–772, 1988, Accessed: 00, 2020. [Online]. Available: