Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Material and Si-based diode analyses of sputtered ZnTe thin films
Date
2020-07-01
Author
Güllü, Hasan Hüseyin
Surucu, O. Bayrakli
Isik, M.
Terlemezoglu, M.
Parlak, M.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
419
views
0
downloads
Cite This
Structural, optical, and electrical properties ZnTe thin films grown by magnetron sputtering technique were studied by X-ray diffraction, atomic force microscopy, Raman spectroscopy, and electrical conductivity measurements. Structural analyses showed that ZnTe thin films grown on soda-lime glass substrates have a cubic crystalline structure. This crystalline nature of the films was also discussed in terms of Raman active modes. From atomic force microscopy images, the smooth and dense surface profile was observed. The conductivity of the film at room temperature was measured as 2.45 x 10(-4)(omega cm)(-1)and the temperature dependency of conductivity showed Arrhenius behavior. The dark conductivity profile was modeled by thermionic emission mechanism and activation energies were extracted. In addition, the conductivity values indicated an increasing behavior with illumination intensity applied between 20 and 115 mW/cm(2). The heterojunction diode was generated by sputtering ZnTe film on n-Si wafer substrate and the rectification behavior was evaluated to determine the main diode parameters.
Subject Keywords
Electrical and Electronic Engineering
,
Atomic and Molecular Physics, and Optics
,
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/52215
Journal
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
DOI
https://doi.org/10.1007/s10854-020-03688-x
Collections
Test and Measurement Center In advanced Technologies (MERKEZ LABORATUVARI), Article
Suggestions
OpenMETU
Core
Temperature -dependent optical and electrical characterization of Cu-Ga-S thin films and their diode characteristics on n-Si
Gullu, H. H.; Isik, M.; Hasanlı, Nızamı; Parlak, Mehmet (Elsevier BV, 2020-04-01)
In this paper, optical and electrical properties of thermally deposited Cu-Ga-S thin films were investigated using temperature-dependent optical transmission and electrical conductivity measurements. The analysis of the transmission spectra resulted in formation of three direct optical transitions due to the possible valence band splitting in the structure. The band gap values were calculated by means of absorption coefficient and incident photon energy was found in decreasing behavior as the temperature ri...
Frequency effect on electrical and dielectric characteristics of HfO2-interlayered Si-based Schottky barrier diode
Gullu, H. H.; Yildiz, D. E.; Surucu, O.; Parlak, Mehmet (Springer Science and Business Media LLC, 2020-06-01)
This study reveals the electrical properties of In/HfO2/n-Si structure with atomic layer-deposited interfacial oxide layer, HfO2 thin film between In top metal contact and monocrystalline Si wafer substrate. From the dark current-voltage measurements, the diode structure showed good rectifying behavior and low saturation current of about two order of magnitude and 1.2 x 10(- 9) A, respectively. According to the conventional thermionic emission model, zero-bias barrier height and ideality factor were calcula...
Structural and molecular electronic properties of B-N ring doped single-wall carbon nanotubes
Malcıoğlu, Osman Barış; Erkoc, A (Elsevier BV, 2005-08-01)
Various molecular electronic properties of boron-nitride nanotube ring doped four different single-wall carbon nanotubes are investigated theoretically by performing self-consistent-field molecular-orbital semi-empirical and density functional theory calculations. Results are compared with corresponding carbon nanotubes. It is seen that polar nature of the boron-nitride nanotube ring lead to a spontaneous polarization, an electrostatic potential barrier occurs in metallic carbon nanotube models, and these m...
Energetics and structural properties of carbon and oxygen doped hexagonal boron nitride sheets
Kökten, Hatice (Elsevier BV, 2011-10-01)
Energetics and structural properties of carbon and oxygen doped hexagonal boron nitride sheets have been investigated by performing density functional theory calculations. Substitutional doping model has been considered in the neutral charge state. C and O atoms replaced either B or N site in the system as impurities. A systematic study has been performed to see the effect of cell size on the calculated quantities, such as formation energy, relaxation energy, charge and bond length. It has been found that s...
Frequency effect on electrical and dielectric characteristics of In/Cu2ZnSnTe4/Si/Ag diode structure
Gullu, H. H.; Surucu, O. Bayrakli; Terlemezoğlu, Makbule; Yildiz, D. E.; Parlak, Mehmet (Springer Science and Business Media LLC, 2019-05-01)
In/Cu2ZnSnTe4/Si/Ag diode structure was fabricated by sputtering Cu2ZnSnTe4 (CZTTe) thin film layer on the Si layer with In front contact. The frequency dependent room temperature capacitance and conductance measurements were carried out to obtain detailed information of its electrical characteristics. Admittance spectra of the diode exhibited strong frequency dependence and the obtained values showed decreasing behavior with the increase in the applied frequency. The effect of interfacial film layer with s...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. H. Güllü, O. B. Surucu, M. Isik, M. Terlemezoglu, and M. Parlak, “Material and Si-based diode analyses of sputtered ZnTe thin films,”
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
, pp. 11390–11397, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52215.