Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Preparation and photocatalytic activity of apatite-precipitated TiO2
Date
2011-04-01
Author
Soysal, K.
PARK, JONGEE
You, S. H.
Shin, D. W.
Bae, W. T.
Öztürk, Abdullah
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
150
views
0
downloads
Cite This
Apatite was precipitated on the surface of titanium dioxide (TiO2) powder by a biomimetic process. The precipitation was accomplished by immersing TiO2 powder in simulated body fluid (SBF) for 1, 3, 6, 12 and 24 h. Photocatalytic activity of the apatite-precipitated TiO2 (HAp-TiO2) powders was investigated to assess the decomposition of methylene blue (MB) in aqueous solution and the removal of acetaldehyde gas under UV irradiation. Hydroxyapatite precipitation enhanced the photocatalytic activity of the TiO2 powder. The time required for the complete degradation of MB decreased from 3.5 to 2 h with the immersion of TiO2 powders in SBF for 3 h. In terms of acetaldehyde gas decomposition, less than 1 h was sufficient to achieve complete removal for HAp-TiO2 powder but at least 2 h were required for the bare TiO2 powder. HAp-TiO2 powders could therefore be a promising candidate photocatalyst for environmental purification.
Subject Keywords
TiO2 powder
,
Apatite
,
Simulated body fluid
,
Photocatalyst
URI
https://hdl.handle.net/11511/53367
Journal
JOURNAL OF CERAMIC PROCESSING RESEARCH
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Photocatalytic activity of apatite-deposited titanium dioxide powde
Soysal, Kaan; Öztürk, Abdullah; Department of Metallurgical and Materials Engineering (2010)
Apatite was formed on the surface of titanium dioxide (TiO2) powders by a biomimetic process. The deposition was accomplished by immersing TiO2 powders in simulated body fluid (SBF) for 1, 3, 6, 12, and 24 h. SBF used throughout this study had calcium and phosphate ion concentrations 10 times greater than those of human blood plasma. Photocatalytic activity of the apatite-deposited TiO2 powders was investigated in terms of the decomposition of methylene blue solution under ultraviolet (UV) irradiation. It h...
Preparation of boron-zirconium co-doped photocatalytic titanium dioxide powder
Tokmakçı, Tolga; Öztürk, Abdullah; Jongee, Park; Department of Metallurgical and Materials Engineering (2013)
A titanium dioxide powder co-doped with boron and zirconium was prepared by mechanical ball milling. Photocatalytic performance of the powder was evaluated by degradation of methylene blue (MB) solution under UV illumination. XRD patterns were refined by Rietveld analysis method to obtain accurate lattice parameters and position of the atoms in the crystal structure of TiO2. XRD analysis indicated that the B and/or Zr doped TiO2 powders composed of anatase and did not exhibit any additional phase. Rietveld ...
Synthesis of Photocatalytic Titanium Dioxide Nanopowders Using Different Acid Catalysers
Öztürk, Abdullah (2018-12-01)
Photocatalytic titanium dioxide (TiO2) nanoparticles were synthesized via acid assisted sol-gel process. The effects of different acids namely; acetic acid, hydrochloric acid, and nitric acid on the formation of TiO2 nanoparticles and their photocatalytic properties were investigated. XRD, SEM, and UV-Vis spectrophotometer analyses were performed to examine the physical and chemical characteristics of the nano powders. The results showed that only anatase phase of TiO2nanoparticleswith different crystallite...
Preparation, characterization, and antibacterial activity of organo-sepiolite/chitosan/silver bionanocomposites
TEKİN, NALAN; Şafaklı, Akif; BUDAK, FATMA; KARA, ALİ (2019-05-01)
Bionanocomposites with different loadings of silver (Ag) were prepared via synthesis of Ag nanoparticles (AgNPs) using the wet chemical reduction method in the lamellar space layer of the organo-sepiolite/chitosan (O-SEP/CS). The prepared O-SEP/CS/Ag bionanocomposites were characterized using various analysis methods for their structure, morphology, and optical properties. The characteristic absorption bands from the UV-visible absorption spectrum confirmed the formation of AgNPs. The antibacterial activiti...
Synthesis of biomimetic Ca-hydroxyapatite powders at 37 degrees C in synthetic body fluids
Tas, AC (2000-07-01)
An important inorganic phase for synthetic bone applications, calcium hydroxyapatite (HA, Ca-10(PO4)(6)(OH)(2)), was prepared as a nano-sized (similar to 50 nm), homogeneous and high-purity ceramic powder from calcium nitrate tetrahydrate and diammonium hydrogen phosphate salts dissolved in modified synthetic body fluid (SBF) solutions at 37 degrees C and pH of 7.4 using a novel chemical precipitation technique. The synthesized precursors were found to easily reach a phase purity >99% after 6 h of calcinati...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Soysal, J. PARK, S. H. You, D. W. Shin, W. T. Bae, and A. Öztürk, “Preparation and photocatalytic activity of apatite-precipitated TiO2,”
JOURNAL OF CERAMIC PROCESSING RESEARCH
, pp. 176–182, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53367.