MIMO Radar Target Localization by Using Doppler Shift Measurement

2009-10-02
Kalkan, Yilmaz
Baykal, Buyurman
A new method for target localization in MIMO radar is proposed. Localization of a moving, non-maneuvering target is possible by using Doppler-shift measurements and angle information in MIMO radar systems. This is a nonlinear problem and it must be solved for a grid search strategy. If the received frequencies and the angels between the target and the transmitter and the target and the receiver are known, we can search space grid by grid for desired (x, y) coordinates to find the position of the target in 2D space.

Suggestions

Target Localization and Velocity Estimation Methods for Frequency-Only MIMO Radars
Kalkan, Yilmaz; Baykal, Buyurman (2011-05-27)
Target localization and the velocity estimation methods are proposed for frequency-only MIMO Radar with widely separated stations. For the target localization, time of arrival (TOA), angle of arrival (AOA) and frequency of arrival (FOA) informations can be used in cooperation. When the time resolution of the transmitted signals is not enough or good,i.e.; unmodulated CW radar, we can not rely on the TOA information to localize the target. On the other hand, if the frequency resolution of the transmitted sig...
Study on Q-RAM and Feasible Directions Based Methods for Resource Management in Phased Array Radar Systems
Irci, Ayhan; Saranlı, Afşar; Baykal, Buyurman (2010-10-01)
Our recent progress and results on optimal real-time resource allocation in phased array radar systems are reported. A previously proposed discrete resource allocation approach, the Quality of Service based Resource Allocation Model (Q-RAM), is analyzed and is observed to generate nonoptimal results. We identify the shortcomings of this method and first extend it using the Karush-Kuhn-Tucker (KKT) optimality conditions for the single resource type case. We obtain an algorithm that delivers a globally optima...
Ferromagnetic Target Detection and Localization with a Wireless Sensor Network
Antepli, Mehmet Akif; Gurbuz, Sevgi Zubeyde; Uysal, Elif (2010-11-03)
This work attempts to address challenges of using magnetic sensors for target detection, localization and tracking with a wireless sensor network (WSN). A WSN comprised of magnetic sensors was constructed to investigate the modeling, detection, and localization of ferrous targets. The system was established as a centralized tree-based wireless network with a PC acting as the fusion center. A heavy cylindrical iron bar was used as a test target and modeled as a magnetic dipole. The magnetic signal models use...
Frequency based target localization methods for MIMO radar
Kalkan, Yılmaz; Baykal, Buyurman (null; 2011-04-22)
A new frequency based target localization method is proposed for MIMO radars which are widely separated. The performance of this new method is compared with other frequency based target localization methods. For target localization, time of arrival (TOA), angle of arrival (AOA) and frequency of arrival (FOA) informations can be used in cooperation. In general, TOA information is enough to localize a target. However, when the time resolution of the transmitted signals is not enough or good,i.e.; unmodulated ...
Multi-dimensional hough transform based on unscented transform as a method of track-before-detect /
Şahin, Gözde; Demirekler, Mübeccel; Department of Electrical and Electronics Engineering (2014)
Track-Before-Detect (TBD) is the problem where target state estimation and detection occur simultaneously, and is a suitable method for the detection of low-SNR targets in unthresholded sensor data. In this thesis, a new Multi-Dimensional Hough Transform (MHT) technique based on Unscented Transform is proposed for the detection of dim targets in radar data. MHT is a TBD method that fuses Hough Transform results obtained on (x-t), (y-t) and (x-y) domains in order to detect a constant velocity target. The pro...
Citation Formats
Y. Kalkan and B. Baykal, “MIMO Radar Target Localization by Using Doppler Shift Measurement,” 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53656.