COMBINED USE OF CONTROL MOMENT GYROS AND MAGNETIC TORQUE RODS FOR SATELLITE ATTITUDE CONTROL

2010-09-15
Elmas, Tuba C.
Tekinalp, Ozan
A new approach to the attitude control of an over actuated satellite is presented. A control moment gyroscopes cluster containing four actuators in a pyramid mounting configuration, and a set of three orthogonal magnetic torque rods are considered to steer the satellite. Two steering algorithms, Moore-Penrose pseudo inverse, and the recently developed blended-inverse, are considered. The success of the blended-inverse algorithm to select the desired actuators in the system is demonstrated. It is also shown through simulations that the blended-inverse algorithm successfully carries out the maneuver without getting trapped in singular configurations, while the classical Moore-Penrose pseudo inverse algorithm fails to realize.

Suggestions

Comparison of Outer Rotor Radial Flux and Axial Flux PM Motors for CMG Application
Ertan, Hulusi Bülent (2014-09-05)
Control moment gyroscopes (CMG) are used in modern satellite applications for attitude control of satellites. The volume and mass of the instruments is very important in such applications. In this context, integrating the mass of the CMG, on the stator of the motor, promises to save space and mass. Radial-flux outer-rotor motor is a promising configuration in that respect. In this paper, using such a PM motor is considered for control moment gyroscope applications. The design of the motor must be made such ...
Waveguide-based Monopulse Wideband Travelling-Wave Array
GULTEPE, Gokhan; DOGAN, Doganay; Aydın Çivi, Hatice Özlem (2017-07-14)
A novel, travelling-wave, waveguide antenna structure with monopulse capability in the two principal planes is proposed with increased frequency bandwidth. The array consists of two interleaved waveguide arrays which provide appropriate excitations to the antenna elements above the waveguide to generate proper sum and difference patterns. With the use of printed antennas and the elimination of the narrow frequency characteristics of the slots on the waveguides, the bandwidth of the array is greatly improved.
Attitude Control of Satellites with De-Orbiting Solar Sails
Tekinalp, Ozan (2013-06-14)
Utilization of solar sails for the de-orbiting of satellites is investigated. The satellite orbit is assumed to be equatorial. Proper attitude maneuver is prescribed to utilize highest solar drag from the sun. The maneuver is realized using a quaternion feedback algorithm. The success of the attitude control during the continuous and abrupt maneuvers is shown through simulations. The reduction in semi major axis due to solar drag is also demonstrated.
Development of an autopilot for automatic landing of an unmanned aerial vehicle
Arıbal, Seçkin; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2011)
This thesis presents the design of an autopilot and guidance system for an unmanned aerial vehicle. Classical (PID) and modern control (LQT, Sliding Mode) methods for autonomous navigation and landing in adverse weather conditions are implemented. Two different guidance systems are designed in order to navigate through waypoints during normal and/or emergency flight. The nonlinear Pioneer UAV model is used in controller development and simulations. Aircraft is linearized at different trim points and total a...
Optimal Design of a Miniature Quad Tilt Rotor UAV
Kahvecioglu, Ahmet Caner; Alemdaroglu, Nafiz (2015-06-12)
This paper describes the design procedure of a convertible miniature (mini and micro) quad tilt rotor unmanned air vehicle (UAV), which has about 2 meters of wing span, one hour of mission time and 5 kilograms of total weight. The aircraft is driven by four brushless direct current motors, and the structure of it completely made of composite materials. When the wing and tail of the aircraft are dismounted, it operates as a quad- rotor with tilting rotors. The aircraft is planned to carry a gimbal camera wei...
Citation Formats
T. C. Elmas and O. Tekinalp, “COMBINED USE OF CONTROL MOMENT GYROS AND MAGNETIC TORQUE RODS FOR SATELLITE ATTITUDE CONTROL,” 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53665.