Sonmezoglu, S.
Gavcar, H. D.
Azgın, Kıvanç
Alper, S. E.
Akın, Tayfun
This paper presents a novel "in operation acceleration sensing and compensation method" for a single-mass mode-matched MEMS gyroscope. In this method, the amplitudes of the sustained residual quadrature signals on the differential sense-mode electrodes are compared to measure the linear acceleration acting on the sense-axis of the gyroscope. By measuring the acceleration acting along the sense-axis, the g-sensitivity of the gyroscope output to these accelerations is mitigated without using a dedicated accelerometer. It has been experimentally demonstrated that the g-sensitivity of the studied gyroscope is substantially reduced from 1.08 degrees/s/g to 0.04 degrees/s/g, and the effect of the linear acceleration on the gyroscope output is highly-suppressed (by 96%) with the use of the compensation method proposed in this work.


Compensation methos for quasi-static acceleration sensitivity of MEMS gyroscopes /
Gavcar, Hasan Doğan; Azgın, Kıvanç; Department of Electrical and Electronics Engineering (2014)
This thesis presents the quasi-static acceleration compensation methods for a fully decoupled MEMS gyroscope. These methods are based on the utilization of the amplitude difference information between the residual quadrature signals on the differential sense mode electrodes to sense the static acceleration acting on the sense mode of the gyroscope. There are three different quasi-static acceleration compensation methods presented in this thesis. In the first method, the static acceleration is measured by co...
Process Development for the Fabrication of a Three Axes Capacitive MEMS Accelerometer
Aydemir, Akin; Akın, Tayfun (2015-09-09)
This paper presents a new approach for the fabrication of a three-axis capacitive MEMS accelerometer that is capable of differentially sensing the acceleration in all three orthogonal axes. For the first time in literature, differential sensing for the out of plane direction is achieved by defining a movable sensing electrode on the structural layer of the SOI wafer that is sandwiched between two stationary electrodes defined on the glass substrate and the handle layer of the SOI wafer enabling the differen...
Fabrication of a Three-Axis Capacitive MEMS Accelerometer on a Single Substrate
Aydemir, Akin; Akın, Tayfun (2015-11-04)
This paper presents a new fabrication approach and a design for the fabrication of a three-axis capacitive MEMS accelerometer where differential sensing is enabled for all sense directions. In this approach, individual lateral and vertical axis accelerometers are fabricated in the same die on an SOI wafer which is eutectically bonded to a glass substrate. Differential sensing for the vertical axis accelerometer is realized by defining the proof mass of the accelerometer on the structural layer of the SOI wa...
Analysis of vision aided inertial navigation systems
Yuksel, Yigiter; Kaygisiz, H. Burak (2006-04-19)
We propose in this paper a method to integrate inertial navigation systems with electro optic imaging devices. Our method is based on updating the inertial navigation system in a Kalman filter structure using line of sight measurements obtained from a camera. The proposed method is analyzed based on a UAV scenario generated by our trajectory simulator and the results are provided here. The results show that even a single vision aid can improve the performance of inertial navigation system.
Experimental characterization of collapse-mode CMUT operation
Oralkan, Omer; Bayram, Barış; Yaralioglu, Goksen G.; Ergun, A. Sanli; Kupnik, Mario; Yeh, David T.; Wygant, Ira O.; Khuri-Yakub, Butrus T. (2006-08-01)
This paper reports on the experimental characterization of collapse-mode operation of capacitive micromachined ultrasonic transducers (CMUTs). CMUTs are conventionally operated by applying a direct current (DC) bias voltage less than the collapse voltage of the membrane, so that the membrane is deflected toward the bottom electrode. In the conventional regime, there is no contact between the membrane and the substrate; the maximum alternating current (AC) displacement occurs at the center of the membrane. I...
Citation Formats
S. Sonmezoglu, H. D. Gavcar, K. Azgın, S. E. Alper, and T. Akın, “SIMULTANEOUS DETECTION OF LINEAR AND CORIOLIS ACCELERATIONS ON A MODE-MATCHED MEMS GYROSCOPE,” presented at the 27th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, 2014, Accessed: 00, 2020. [Online]. Available: