Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Field orientation scheme for voltage fed induction motor with closed loop phase angle control
Date
1994-10-28
Author
NALCACI, AE
Ertan, Hulusi Bülent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
124
views
0
downloads
Cite This
Subject Keywords
Engineering
,
Electrical and electronic
,
Engineering
,
Mechanical
URI
https://hdl.handle.net/11511/54865
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
A Compact Energy Transducer for Power Generation From Respiration
Beyaz, Mustafa Ilker; Habibiabad, Sahar; Yildiz, Hamza; Goreke, Utku; Azgın, Kıvanç (Institute of Electrical and Electronics Engineers (IEEE), 2019-06-01)
This paper reports a compact magnetic transducer developed for generating electrical power from respiration. The device incorporates a side-drive turbine rotor with embedded permanent magnets and two stators, integrated into a poly(methyl methacrylate) (PMMA) package for actuation. The novelty and advantage of the design lies in almost full use of the available turbine volume together with two stators for both mechanical and electrical transduction, which leads to high rotational speeds and high voltage gen...
A Compact Angular Rate Sensor System Using a Fully Decoupled Silicon-on-Glass MEMS Gyroscope
Alper, Said Emre; Temiz, Yuksel; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2008-12-01)
This paper presents the development of a compact single-axis angular rate sensor system employing a 100-mu m-thick single-crystal silicon microelectromechanical systems gyroscope with an improved decoupling arrangement between the drive and sense modes. The improved decoupling arrangement of the gyroscope enhances the robustness of sensing frame against drive-mode oscillations and therefore minimizes mechanical crosstalk between the drive and sense modes, yielding a small bias instability. The gyroscope cor...
A monolithic three-axis micro-g micromachined silicon capacitive accelerometer
Chae, J; Külah, Haluk; Najafi, K (Institute of Electrical and Electronics Engineers (IEEE), 2005-04-01)
A monolithic three-axis micro-g resolution silicon capacitive accelerometer system utilizing a combined surface and bulk micromachining technology is demonstrated. The accelerometer system consists of three individual single-axis accelerometers fabricated in a single substrate using a common fabrication process. All three devices have 475-mu m-thick silicon proof-mass, large area polysilicon sense/drive electrodes, and small sensing gap (< 1.5 mu m) formed by a sacrificial oxide layer. The fabricated accele...
An Automatically Mode-Matched MEMS Gyroscope With Wide and Tunable Bandwidth
Sonmezoglu, Soner; Alper, Said Emre; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2014-04-01)
This paper presents the architecture and experimental verification of the automatic mode-matching system that uses the phase relationship between the residual quadrature and drive signals in a gyroscope to achieve and maintain matched resonance mode frequencies. The system also allows adjusting the system bandwidth with the aid of the proportional-integral controller parameters of the sense-mode force-feedback controller, independently from the mechanical sensor bandwidth. This paper experimentally examines...
An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout circuitry
Chae, J; Külah, Haluk; Najafi, K (Institute of Electrical and Electronics Engineers (IEEE), 2004-08-01)
A high-sensitivity, low-noise in-plane (lateral) capacitive silicon microaccelerometer utilizing a combined surface and bulk micromachining technology is reported. The accelerometer utilizes a 0.5-mm-thick, 2.4 x 1.0 mm(2) proof-mass and high aspect-ratio vertical polysilicon sensing electrodes fabricated using a trench refill process. The electrodes are separated from the proof-mass by a 1.1-mum sensing gap formed using a sacrificial oxide layer. The measured device sensitivity is 5.6 pF/g. A CMOS readout ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. NALCACI and H. B. Ertan, “A Field orientation scheme for voltage fed induction motor with closed loop phase angle control,” 1994, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54865.