Optimal Cavities to Enhance Free-space Matching in Solar Cells

Karaosmanoglu, B.
Topcuoglu, U.
Guler, S.
Tuygar, E.
Ergül, Özgür Salih
In this paper, we present design and numerical simulations of nano-cavities for free space matching in solar cells at optical frequencies. The cavity designs are inspired by the wellknown antenna geometries that are commonly used at radio and microwave frequencies. Using such designs that have not been explored before in the context of solar cells, the electromagnetic mismatch between solar-cell surfaces and vacuum is significantly reduced, in comparison to planar interfaces and those with the conventional corrugations. This way, using the designed optimal cavities, the efficiency of solar cells can be increased without employing any matching layer that complicates the fabrication processes. All simulations and comparisons are performed in highly accurate in-house implementations of surface integral equations accelerated with the multilevel fast multipole algorithm.
Progress in Electromagnetics Research Symposium (PIERS-Toyama)


Improved Nano-optical Traps for Single-particle Sensing Applications
Isiklar, G.; Algun, M.; Ergül, Özgür Salih (2019-01-01)
We present numerical design and simulations of nano-optical traps for single-particle sensing applications. While commonly used nano-holes with circular shapes are suitable for physically trapping nanoparticles to be detected and identified, they generate relatively weak signals in the far zone, especially when nanoparticles are small. We show that optical sensitivity of nano-holes can be enhanced significantly by using well-designed tip geometries such that metallic and dielectric nanoparticles can be dete...
Accurate analysis of metamaterials involving finite arrays of split-ring resonators and thin wires
Gurel, Levent; Ergül, Özgür Salih; Unal, Alper (2007-03-30)
In order to gain physical insight into how some metamaterial structures behave, we report our results obtained by accurate numerical solutions of electromagnetic problems related to various constructions of split-ring-resonators (SRRs) and thin wires (TWs). Single and multiple layers of arrays of SRRs and TWs are investigated in detail using the electric-field integral equation. Without utilizing any homogenization techniques, we accurately model large numbers of unit cells that translate into very large co...
Accurate solutions of scattering problems involving low-contrast dielectric objects with surface integral equations
Ergül, Özgür Salih (2007-11-16)
We present the stabilization of the surface integral equationsfor accurate solutions of scattering problems involvinglow-contrast dielectric objects. Unlike volume formulations,conventional surface formulations fail to provide accurateresults for the scatteredfields when the contrast of theobject is small. Therefore, surface formulations are requiredto be stabilized by extracting the nonradiating parts of theequivalent currents. In addition to previous strategies forthe stabilization, we introduce a n...
Hybrid CFIE-EFIE solution of composite geometries with coexisting open and closed surfaces
Ergül, Özgür Salih (2005-07-08)
The combined-field integral equation (CFIE) is employed to formulate the electromagnetic scattering and radiation problems of composite geometries with coexisting open and closed conducting surfaces. Conventional formulations of these problems with the electric-field integral equation (EFIE) lead to inefficient solutions due to the ill-conditioning of the matrix equations and the internal-resonance problems. The hybrid CFIE-EFIE technique introduced in this paper, based on the application of the CRE on the ...
Accuracy of the Surface Integral-equation Formulations for Large Negative Permittivity Values
Karaosmanoglu, B.; Ergül, Özgür Salih (2017-05-25)
Computational solutions of plasmonic problems involving metals at optical frequencies formulated with surface integral equations are considered. Numerical inaccuracies arise when using the conventional formulations for penetrable bodies, especially as the negative real permittivity becomes very large at the lower frequencies of the optical spectrum. In order to close the gap between plasmonic and perfectly conducting simulations, it is required to extend the applicability of surface integral equations to in...
Citation Formats
B. Karaosmanoglu, U. Topcuoglu, S. Guler, E. Tuygar, and Ö. S. Ergül, “Optimal Cavities to Enhance Free-space Matching in Solar Cells,” presented at the Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, JAPAN, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55071.