Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimal Cavities to Enhance Free-space Matching in Solar Cells
Date
2018-08-04
Author
Karaosmanoglu, B.
Topcuoglu, U.
Guler, S.
Tuygar, E.
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
186
views
0
downloads
Cite This
In this paper, we present design and numerical simulations of nano-cavities for free space matching in solar cells at optical frequencies. The cavity designs are inspired by the wellknown antenna geometries that are commonly used at radio and microwave frequencies. Using such designs that have not been explored before in the context of solar cells, the electromagnetic mismatch between solar-cell surfaces and vacuum is significantly reduced, in comparison to planar interfaces and those with the conventional corrugations. This way, using the designed optimal cavities, the efficiency of solar cells can be increased without employing any matching layer that complicates the fabrication processes. All simulations and comparisons are performed in highly accurate in-house implementations of surface integral equations accelerated with the multilevel fast multipole algorithm.
Subject Keywords
Electromagnetic scattering
URI
https://hdl.handle.net/11511/55071
Conference Name
Progress in Electromagnetics Research Symposium (PIERS-Toyama)
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Improved Nano-optical Traps for Single-particle Sensing Applications
Isiklar, G.; Algun, M.; Ergül, Özgür Salih (2019-01-01)
We present numerical design and simulations of nano-optical traps for single-particle sensing applications. While commonly used nano-holes with circular shapes are suitable for physically trapping nanoparticles to be detected and identified, they generate relatively weak signals in the far zone, especially when nanoparticles are small. We show that optical sensitivity of nano-holes can be enhanced significantly by using well-designed tip geometries such that metallic and dielectric nanoparticles can be dete...
Accurate analysis of metamaterials involving finite arrays of split-ring resonators and thin wires
Gurel, Levent; Ergül, Özgür Salih; Unal, Alper (2007-03-30)
In order to gain physical insight into how some metamaterial structures behave, we report our results obtained by accurate numerical solutions of electromagnetic problems related to various constructions of split-ring-resonators (SRRs) and thin wires (TWs). Single and multiple layers of arrays of SRRs and TWs are investigated in detail using the electric-field integral equation. Without utilizing any homogenization techniques, we accurately model large numbers of unit cells that translate into very large co...
Accurate solutions of scattering problems involving low-contrast dielectric objects with surface integral equations
Ergül, Özgür Salih (2007-11-16)
We present the stabilization of the surface integral equationsfor accurate solutions of scattering problems involvinglow-contrast dielectric objects. Unlike volume formulations,conventional surface formulations fail to provide accurateresults for the scatteredfields when the contrast of theobject is small. Therefore, surface formulations are requiredto be stabilized by extracting the nonradiating parts of theequivalent currents. In addition to previous strategies forthe stabilization, we introduce a n...
On the Accuracy and Efficiency of Surface Formulations in Fast Analysis of Plasmonic Structures via MLFMA
Karaosmanoglu, B.; Yılmaz, Ayşen; Ergül, Özgür Salih (2016-08-11)
We consider the accuracy and efficiency of surface integral equations, when they are used to formulate electromagnetic problems involving plasmonic objects at optical frequencies. Investigations on the iterative solutions of scattering problems with the multilevel fast multipole algorithm show that the conventional formulations, especially the state-of-the-art integral equations, can significantly be inaccurate, in contrast to their performances for ordinary dielectrics. The varying performances of the form...
Hybrid CFIE-EFIE solution of composite geometries with coexisting open and closed surfaces
Ergül, Özgür Salih (2005-07-08)
The combined-field integral equation (CFIE) is employed to formulate the electromagnetic scattering and radiation problems of composite geometries with coexisting open and closed conducting surfaces. Conventional formulations of these problems with the electric-field integral equation (EFIE) lead to inefficient solutions due to the ill-conditioning of the matrix equations and the internal-resonance problems. The hybrid CFIE-EFIE technique introduced in this paper, based on the application of the CRE on the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Karaosmanoglu, U. Topcuoglu, S. Guler, E. Tuygar, and Ö. S. Ergül, “Optimal Cavities to Enhance Free-space Matching in Solar Cells,” presented at the Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, JAPAN, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55071.