Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Performance Analysis of Faster than Symbol Rate Sampling in 1-Bit Massive MIMO Systems
Date
2017-05-25
Author
Üçüncü, Ali Bulut
Yılmaz, Ali Özgür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
211
views
0
downloads
Cite This
Low resolution analog-to-digital converters (ADC) attracted much attention lately for massive multiple-input multiple-output (MIMO) communication and systems with high bandwidth. Especially, 1-bit ADCs are suitable for such systems due to their low power consumption and cost. In this study, we illustrate the benefits of using faster than symbol rate (FTSR) sampling in an uplink massive MIMO system with 1-bit ADCs in terms of symbol error rate (SER). We show that FTSR sampling provides about 4 dB signal-to-noise ratio (SNR) advantage in terms of SER with a linear low complexity zero-forcing type receiver. We also obtain an analytical bound for the SER performance of uplink massive MIMO structures with 1-bit quantization for the FTSR sampling scenario for low, medium and high SNR regimes. The proposed analytical bound is also applicable to no FTSR sampling case and shown to yield more accurate results compared to some other analytical expressions in the literature. Our results establish a tradeoff between temporal oversampling and the number of receive antennas.
Subject Keywords
Narrow-band
,
Interference
URI
https://hdl.handle.net/11511/55490
Conference Name
IEEE International Conference on Communications (ICC)
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Oversampling in One-Bit Quantized Massive MIMO Systems and Performance Analysis
Üçüncü, Ali Bulut; Yılmaz, Ali Özgür (2018-12-01)
Low-resolution analog-to-digital converters (ADCs) have attracted much attention lately for massive multiple-input multiple-output (MIMO) communication and systems with large bandwidth. Especially, 1-bit ADCs are suitable for such systems due to their low-power consumption and cast. In this paper, we illustrate the benefits of using faster than symbol rate (FTSR) sampling in an uplink massive MIMO system with 1-bit ADCs in terms of symbol error rate (SER). We show that the FTSR sampling provides about 5-dB ...
Massive Multiple-Input Multiple-Output Communication Systems with Low-Resolution Quantizers
Üçüncü, Ali Bulut; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2021-12-2)
Low resolution analog-to-digital converters (ADC) attracted much attention for their use inmassivemultiple-inputmultiple-output (MIMO) systems due to their low power consumption and cost. In this thesis, we question whether large number of antennas present in massive MIMO is sufficient to provide an ultimate performance or additional sampling in time (temporal oversampling) will provide significant performance advantages. To begin with, we illustrate the benefits of oversampling in time for uplink massive M...
Directivity enhancehment of antipodal vivaldi antenna using broadband metasurface lens
Sayan, Gönül (2019-07-01)
© 2019 IEEE.In this work, radiation performance of an antipodal Vivaldi antenna is enhanced using a broadband metasurface lens structure in 1-6 GHz bandwidth. Radiation pattern for the new antenna is more directive due to electromagnetic properties of the metasurface lens. In order to create such a lens, electrically responsive unit cells with high effective permittivity values are utilized. Unit cell dimensions are adjusted to display no resonant behaviour in the designated bandwidth. Overall lens structur...
Design and Analysis of Nanoantenna Arrays for Imaging and Sensing Applications at Optical Frequencies
Isiklar, Goktug; Cetin, Isa Can; Algun, Mustafa; Ergül, Özgür Salih (2019-01-01)
We present computational analysis of nanoantenna arrays for imaging and sensing applications at optical frequencies. Arrays of metallic nanoantennas are considered in an accurate simulation environment based on surface integral equations and the multilevel fast multipole algorithm developed for plasmonic structures. Near-zone responses of the designed arrays to nearby nanoparticles are investigated in detail to demonstrate the feasibility of detection. We show that both metallic and dielectric nanoparticles...
Performance Evaluation and Comparison of Single-Phase and Two-Phase Interleaving Flyback Micro-Inverters for Grid Connected PV Systems
Kavurucu, Semih; Hava, Ahmet Masum (2014-06-04)
Flyback converter based single-stage, microinverters are attractive solution for interfacing individual PV modules to the grid due to their low cost, high performance, ease of implementation, and galvanic isolation. In such applications, discontinuous conduction mode (DCM) of operation and interleaving techniques bring additional size and performance advantages such as eliminating reverse recovery loss, switching stress, EMI radiation, and improving efficiency. This paper focuses on performance evaluation o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. B. Üçüncü and A. Ö. Yılmaz, “Performance Analysis of Faster than Symbol Rate Sampling in 1-Bit Massive MIMO Systems,” presented at the IEEE International Conference on Communications (ICC), Paris, FRANCE, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55490.