Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Molecular adaptations of Helicoverpa armigera midgut tissue under pyrethroid insecticide stress characterized by differential proteome analysis and enzyme activity assays
Date
2013-06-01
Author
Konus, Metin
Koy, Cornelia
Mikkat, Stefan
Kreutzer, Michael
Zimmermann, Ralf
İşcan, Mesude
Glocker, Michael O.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
Helicoverpa armigera is an insect that causes important economic losses in crops. To reduce this loss, pyrethroids have been commonly used against H. armigera in farming areas. However, excess and continuous usage of pyrethroids cause resistance in H. armigera. Therefore, expressions of midgut proteins of two H. armigera field populations were compared to those of a susceptible strain by 2-D PAGE and MALDI-ToF-MS. Our results indicate that H. armigera reacts to pyrethroid-induced stress mainly by increasing the expression of energy metabolism-related proteins, such as ATP synthase and arginine kinase. NADPH cytochrome P450 reductase, also up-regulated, could play a role in detoxification of toxic pyrethroid metabolites, such as 3-phenoxybenzaldehyde. Interestingly, while GSTs were not found up-regulated in the comparative proteome analysis, biochemical assays showed significant increases of enzyme activities in both field populations as compared to the susceptible strain. Similarly, although esterases were not found differentially expressed, biochemical assays showed significant increases of esterase activities in both field populations. Thus, esterases are also proposed to be involved in metabolic responses towards pyrethroid insecticide-induced stress. In conclusion, we suggest increased energy metabolism in the midgut tissue of H. armigera as a general prerequisite for compensating the costs of energy-consuming detoxification processes.
Subject Keywords
Genetics
,
Biochemistry
,
Physiology
,
Molecular Biology
URI
https://hdl.handle.net/11511/56912
Journal
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS
DOI
https://doi.org/10.1016/j.cbd.2013.04.001
Collections
Department of Biology, Article