Lipid Profiles of Adipose and Muscle Tissues in Mouse Models of Juvenile Onset of Obesity Without High Fat Diet Induction: A Fourier Transform Infrared (FT-IR) Spectroscopic Study

2015-06-01
Sen, Ilke
Bozkurt, Ozlem
Aras, Ebru
Heise, Sebastian
Brockmann, Gudrun Anni
Severcan, Feride
The current study aims to determine lipid profiles in terms of the content and structure of skeletal muscle and adipose tissues to better understand the characteristics of juvenile-onset spontaneous obesity without high fat diet induction. For the purposes of this study, muscle (longissimus, quadriceps) and adipose (inguinal, gonadal) tissues of 10-week-old male DBA/2J and Berlin fat mouse inbred (BFMI) lines (BFMI856, BFMI860, BFMI861) fed with a standard breeding diet were used. Biomolecular structure and composition was determined using attenuated total reflection Fourier transform (ATR FT-IR) spectroscopy, and muscle triglyceride content was further quantified using high-performance liquid chromatography (HPLC) coupled with an evaporative light scattering detector (ELSD). The results revealed a loss of unsaturation in BFMI860 and BFMI861 lines in both muscles and inguinal adipose tissue, together with a decrease in the hydrocarbon chain length of lipids, especially in the BFMI860 line in muscles, suggesting an increased lipid peroxidation. There was an increase in saturated lipid and triglyceride content in all tissues of BFMI lines, more profoundly in longissimus muscle, where the increased triglyceride content was quantitatively confirmed by HPLC-ELSD. Moreover, an increase in the metabolic turnover of carbohydrates in muscles of the BFMI860 line was observed. The results demonstrated that subcutaneous (inguinal) fat also displayed considerable obesity-induced alterations. Taken together, the results revealed differences in lipid structure and content of BFMI lines, which may originate from different insulin sensitivity levels of the lines, making them promising animal models for spontaneous obesity. The results will contribute to the understanding of the generation of insulin resistance in obesity without high fat diet induction.
APPLIED SPECTROSCOPY

Suggestions

Concentration-Based Measurement Studies of L-Tryptophan Using Terahertz Time-Domain Spectroscopy (THz-TDS)
Ozer, Zeynep; Gok, Seher; Altan, Hakan; Severcan, Feride (SAGE Publications, 2014-01-01)
L-Tryptophan is an extremely important amino acid for a variety of biological functions in living organisms. In this study we were able to measure changes in the concentration of L-tryptophan when incorporated into pellets with polyethylene as a host. The changes were measured both through the characteristic absorption bands of the C11 and C12 bonds in the low terahertz frequency range and using changes in the refractive index where pellets with higher concentrations of L-tryptophan showed higher refractive...
Triglyceride dependent differentiation of obesity in adipose tissues by FTIR spectroscopy coupled with chemometrics
Baloglu, Fatma Kucuk; Baloğlu, Onur; Heise, Sebastian; Brockmann, Gudrun; Severcan, Feride (2017-10-01)
The excess deposition of triglycerides in adipose tissue is the main reason of obesity and causes excess release of fatty acids to the circulatory system resulting in obesity and insulin resistance. Body mass index and waist circumference are not precise measure of obesity and obesity related metabolic diseases. Therefore, in the current study, it was aimed to propose triglyceride bands located at 1770-1720 cm(-1) spectral region as a more sensitive obesity related biomarker using the diagnostic potential o...
Ionizing Radiation Induces Structural and Functional Damage on the Molecules of Rat Brain Homogenate Membranes: A Fourier Transform Infrared (FT-IR) Spectroscopic Study
Demir, Pinar; Akkaş, Sara Banu; Severcan, Mete; Zorlu, Faruk; Severcan, Feride (SAGE Publications, 2015-01-01)
Humans can be exposed to ionizing radiation, due to various reasons, whose structural effects on biological membranes are not well defined. The current study aims to understand the ionizing radiation-induced structural and functional alterations in biomolecules of brain membranes using Fourier transform infrared (FT-IR) spectroscopy using rat animal models. For this purpose, 1000 cGy of ionizing radiation was specifically directed to the head of Sprague Dawley rats. The rats were decapitated after 24 h. The...
Macromolecular characterization of apidose tissues in inbred obese mouse models
Şen, İlke; Severcan, Feride; Banerjee, Sreeparna; Department of Biology (2012)
Obesity is a metabolic disorder that results in elevated levels of free fatty acids and triglycerides in the blood circulation, which further leads to accumulation of lipids within various tissues. Like in other similar metabolic disorders, obesity is thought to be originated from structural and regulatory changes in macromolecular assemblies. This current study aims to investigate the effects of obesity on macromolecular alterations in order to characterize Berlin fat mouse inbred (BFMI) lines which arenew...
Biophysical characterization and diagnosis of obesity from adipose tissue by fourier transform infrared spectroscopy and imaging
Küçük Baloğlu, Fatma; Severcan, Feride; Department of Biology (2017)
Obesity is a heterogeneous disorder originating from the enlargement of visceral (VAT) and subcutaneous (SCAT) adipose tissue mass in the body and this process usually results in disturbed glucose and lipid metabolism. The first part of this study aimed to characterize and compare VAT and SCAT with regard to biomolecular content and also investigate transdifferentiation between white and brown adipocytes. Regarding this aim, Fourier transform infrared (FTIR) microspectroscopy and uncoupling protein 1 (UCP1)...
Citation Formats
I. Sen, O. Bozkurt, E. Aras, S. Heise, G. A. Brockmann, and F. Severcan, “Lipid Profiles of Adipose and Muscle Tissues in Mouse Models of Juvenile Onset of Obesity Without High Fat Diet Induction: A Fourier Transform Infrared (FT-IR) Spectroscopic Study,” APPLIED SPECTROSCOPY, pp. 679–688, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57122.