Biological treatment of paper pulping effluents by using a fungal reactor

1999-01-01
Taseli, BK
Gökçay, Celal Ferdi
Pulp and paper plants are amongst the most polluter industries in this country and elsewhere. Most of the organic halides (AOX) and colour from pulp bleaching units are discharged to the receiving basins without being fully treated. A fungus, which is able to affect over 50% AOX and colour removals from soft-wood bleachery effluents within two days contact time, have been isolated in this laboratory. Optimum condition for dechlorination by this fungus in batch tests was determined as pH 5.5 and 25 degrees C. The low agitation speeds required by the fungus indicated its tendency towards immobilisation on a solid substrate. Glass wool was chosen as a suitable immobilising matrix to be used in the continuous experiments. An up-flow column was packed with glass wool and operated successfully for over one and half years with AOX removals around 70% in 7-8 hours contact time. Fungal dehalogenation required very low supplemental carbon and no DO. The fungal reactor was also effective in dechlorinating polychlorinated aromatics, e.g. PCP, though dehalogenation ability decreased considerably with the chlorinated aliphatics. High PCP concentrations presumably toxified the fungus, even at short exposures, thereby irreversibly damaging the column reactor. (C) 1999 Published by Elsevier Science Ltd on behalf of the IAWQ. All rights reserved.
WATER SCIENCE AND TECHNOLOGY

Suggestions

Biological treatability of pulping effluents by using a Penicillium species
Gökçay, Celal Ferdi; Taseli, BK (1997-03-01)
Pulp and paper plants are among the most polluter industries. Their effluents are normally treated biologically for standard parameters such as BOD and GOD; but biological treatment is usually not complete. Unconventional parameters unique to these wastes, such as color and organic halides(AOX), are virtually persistent throughout the treatment cycle. A fungus, which is able to affect over 50% AOX and color removal from soft wood pulping bleachery effluents in less than two days of contact, have been isolat...
Catalytic ozonation of synthetic wastewaters containing three different dyes in a fluidized bed reactor
Balcı, Ayşe İrem; Özbelge, Ayşe Tülay; Department of Chemical Engineering (2011)
Environmental regulations have imposed limitations on a wide variety of organic and inorganic pollutants in industrial textile wastewaters. There are several degradation methods used in literature studies. Among these methods ozonation is one of the most considered way to degrade refractory chemicals in textile wastewaters. In recent years, catalytic ozonation as being one of the advanced oxidation processes (AOPs), is applied to reduce the ozone consumption and to increase the Chemical Oxygen Demand (COD) ...
Selective sulfate sorption from boric acid factory process liquor: Chitosan-bentonite biocomposite film synthesis as sorbent
Kaya, Fatih; Ozer, Ahmet (2022-09-01)
Chitosan is a natural polymer that is renewable, biocompatible, and biodegradable. Bentonite is a natural mineral with low environmental effects. For this reason, chitosan- bentonite biocomposite film was synthesized as a sorbent and its characterized by FT-IR, SEM, EDX, CHNS elemental analysis and thermal analysis techniques. The sorbent was utilized for selective sulfate (SO42  ) sorption from boric acid factory process liquor, because one of the most important problems in the boric acid productio...
Solvent recovery from photolithography wastes using cellulose ultrafiltration membranes
Savaş, Aygen; Çulfaz Emecen, Pınar Zeynep (2022-04-05)
Solvent recycling and reuse are indispensable for ensuring a sustainable chemical industry and circular economy. In this study we report the fabrication of cellulose ultrafiltration membranes and their application in recovery of propylene glycol methyl ether acetate (PGMEA) used as developer solvent in SU-8 photolithography. Cellulose membranes were fabricated via alkaline hydrolysis of cellulose acetate membranes in aqueous NaOH. Membrane permeance and molecular weight cut-off (MWCO) were tuned via changin...
Genetic control of cellulose, lignin and glucose contents in european black poplar (populus nigra l.) populations from Turkey
Taşkıran, Bircan; Kaya, Zeki; Severcan, Feride; Department of Biology (2014)
Populus nigra L. is considered as one of the most economically significant forest tree species with respect to production of wood, biomass, timber, pulp, paper and other wood-based products, besides its ecological and evolutionary importance. Because of the increased wood needs of the world and demands of renewable energy sources, fast-growing poplar has gained importance. While wood quality, pulp mechanical strength, and biomass are directly associated with high cellulose content, lignin emerges as an unde...
Citation Formats
B. Taseli and C. F. Gökçay, “Biological treatment of paper pulping effluents by using a fungal reactor,” WATER SCIENCE AND TECHNOLOGY, pp. 93–99, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57518.