Impulsive Boundary Value Problems for Planar Hamiltonian Systems

Kayar, Zeynep
Zafer, Ağacık
We give an existence and uniqueness theorem for solutions of inhomogeneous impulsive boundary value problem (BVP) for planar Hamiltonian systems. Green's function that is needed for representing the solutions is obtained and its properties are listed. The uniqueness of solutions is connected to a Lyapunov type inequality for the corresponding homogeneous BVP.


Differential - Operator solutions for complex partial differential equations
Celebi, O; Sengul, S (1998-07-10)
The solutions of complex partial differential equations of order four are obtained by using polynomial differential operators. A correspondence principle is also derived for the solutions of two different differential equations, imposing conditions on the coefficients.
Inverse problems for a semilinear heat equation with memory
Kaya, Müjdat; Çelebi, Okay; Department of Mathematics (2005)
In this thesis, we study the existence and uniqueness of the solutions of the inverse problems to identify the memory kernel k and the source term h, derived from First, we obtain the structural stability for k, when p=1 and the coefficient p, when g( )= . To identify the memory kernel, we find an operator equation after employing the half Fourier transformation. For the source term identification, we make use of the direct application of the final overdetermination conditions.
Least squares differential quadrature time integration scheme in the dual reciprocity boundary element method solution of convection-diffusion problems
Bozkaya, Canan (2005-03-18)
The least squares differential quadrature method (DQM) is used for solving the ordinary differential equations in time, obtained from the application of the dual reciprocity boundary element method (DRBEM) for the spatial partial derivatives in convection-diffusion type problems. The DRBEM enables us to use the fundamental solution of the Laplace equation which is easy to implement computationally. The time derivative and the convection terms are considered as the nonhomogeneity in the equation which are ap...
Asymptotic integration of second-order impulsive differential equations
Akgol, S. D.; Zafer, Ağacık (2018-02-01)
We initiate a study of the asymptotic integration problem for second-order nonlinear impulsive differential equations. It is shown that there exist solutions asymptotic to solutions of an associated linear homogeneous impulsive differential equation as in the case for equations without impulse effects. We introduce a new constructive method that can easily be applied to similar problems. An illustrative example is also given.
Exact Pseudospin Symmetric Solution of the Dirac Equation for Pseudoharmonic Potential in the Presence of Tensor Potential
AYDOĞDU, OKTAY; Sever, Ramazan (Springer Science and Business Media LLC, 2010-04-01)
Under the pseudospin symmetry, we obtain exact solution of the Dirac equation for the pseudoharmonic potential in the presence of the tensor potential with arbitrary spin-orbit coupling quantum number kappa. The energy eigenvalue equation of the Dirac particles is found and the corresponding radial wave functions are presented in terms of confluent hypergeometric functions. We investigate the tensor potential dependence of the energy of the each state in the pseudospin doublet. It is shown that degeneracy b...
Citation Formats
Z. Kayar and A. Zafer, “Impulsive Boundary Value Problems for Planar Hamiltonian Systems,” ABSTRACT AND APPLIED ANALYSIS, pp. 0–0, 2013, Accessed: 00, 2020. [Online]. Available: