Room temperature aerobic Suzuki cross-coupling reactions in DMF/water mixture using zeolite confined palladium(0) nanoclusters as efficient and recyclable catalyst

2010-07-15
DURAP, FEYYAZ
Rakap, Murat
AYDEMİR, MURAT
Özkar, Saim
Herein we report the use of zeolite confined palladium(0) nanoclusters as efficient and recyclable catalyst for Suzuki cross-coupling reactions of aryl bromides with phenylboronic acid. Zeolite confined palladium(0) nanoclusters are highly active catalyst for the Suzuki cross-coupling reactions under mild conditions (room temperature, in air) in DMF/water (1:9) mixture. A variety of aryl bromides undergo Suzuki cross-coupling with phenylboronic acid with quantitative GC yields of biaryl derivatives. Recycling experiments showed that zeolite confined palladium(0) nanoclusters can be used as recyclable catalyst in the Suzuki cross-coupling reactions.
APPLIED CATALYSIS A-GENERAL

Suggestions

New route to synthesis of PVP-stabilized palladium(0) nanoclusters and their enhanced catalytic activity in Heck and Suzuki cross-coupling reactions
DURAP, FEYYAZ; Metin, Onder; AYDEMİR, MURAT; Özkar, Saim (2009-12-01)
Herein we report a new method for the synthesis and characterization of PVP-stabilized palladium(0) nanoclusters and their enhanced catalytic activity in Suzuki coupling and Heck reactions of aryl bromides with phenylboronic acid and styrene, respectively, under mild conditions. The PVP-stabilized palladium(0) nanoclusters with a particle size of 4.5 +/- 1.1 nm were prepared using a new method: refluxing a mixture of potassium tetrachloropalladate(II) and PVP in methanol at 80 degrees C for 1 h followed by ...
Immobilization of dioxomolybdenum(VI) complex bearing salicylidene 2-picoloyl hydrazone on chloropropyl functionalized SBA-15: A highly active, selective and reusable catalyst in olefin epoxidation
Bagherzadeh, Mojtaba; Zare, Maryam; Salemnoush, Taghi; Özkar, Saim; Akbayrak, Serdar (Elsevier BV, 2014-04-05)
A novel organic-inorganic hybrid heterogeneous catalyst system was obtained from the reaction of the molybdenum(VI) complex of salicylidene 2-picoloyl hydrazone with mesoporous silica containing 3-chloropropyl groups prepared by a direct synthetic approach involving hydrolysis and co-condensation of tetraethylorthosilicate (TEOS) and 3-chloropropyltrimethoxysilane in the presence of the triblock copolymer P123 as template under acidic conditions. Characterization of the functionalized materials by X-ray dif...
Nanoceria supported rhodium(0) nanoparticles as catalyst for hydrogen generation from methanolysis of ammonia borane
Ozhava, Derya; Özkar, Saim (Elsevier BV, 2018-12-05)
This work reports the preparation and catalytic use of nanoceria supported rhodium(0) nanoparticles, Rh(0)/nanoCeO(2), as catalyst for hydrogen generation from the methanolysis of ammonia borane. Rh(0)/nanoCeO(2) was in situ formed from the reduction of rhodium(II) octanoate on the surface of nanoceria during the catalytic methanolysis of ammonia borane at room temperature. The results of analysis using PXRD, TEM, STEM-EDS, XPS, SEM, SEM-EDX, N-2 adsorption-desorption and ICP-OES reveal that rhodium(0) nano...
Polymer-immobilized palladium supported on TiO2 (Pd-PVB-TiO2) as highly active and reusable catalyst for hydrogen generation from the hydrolysis of unstirred ammonia-borane solution
Rakap, Murat; Kalu, Egwu Eric; Özkar, Saim (Elsevier BV, 2011-01-01)
Herein we report the preparation, characterization and the catalytic use of the polymer-immobilized palladium catalyst supported on TiO2 (Pd-PVB-TiO2) in the hydrolysis of unstirred ammonia-borane solution. The polymer-immobilized palladium catalyst is stable enough to be isolated as solid materials and characterized by XRD, SM, and EDX. The immobilized palladium catalyst supported on TiO2 is found highly active, isolable, and reusable in the hydrolysis of unstirred ammonia-borane even at low concentrations...
Nanoceria supported palladium(0) nanoparticles: Superb catalyst in dehydrogenation of formic acid at room temperature
Akbayrak, Serdar; TONBUL, YALÇIN; Özkar, Saim (Elsevier BV, 2017-06-05)
Highly efficient dehydrogenation of formic acid (FA) at room temperature was achieved using palladium(0) nanoparticles supported on nanoceria (Pd-0/CeO2) as catalysts. Pd-0/CeO2 was prepared by impregnation of palladium(II) ions on the surface of ceria followed by their reduction with sodium borohydride in aqueous solution at room temperature. Pd((0)/CeO2 was isolated from the reaction solution by centrifugation and characterized by a combination of advanced analytical techniques. The catalytic activity of ...
Citation Formats
F. DURAP, M. Rakap, M. AYDEMİR, and S. Özkar, “Room temperature aerobic Suzuki cross-coupling reactions in DMF/water mixture using zeolite confined palladium(0) nanoclusters as efficient and recyclable catalyst,” APPLIED CATALYSIS A-GENERAL, pp. 339–344, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62891.