Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Chemical preparation of carbonated calcium hydroxyapatite powders at 37 degrees C in urea-containing synthetic body fluids
Download
index.pdf
Date
1999-01-01
Author
Bayraktar, D
Tas, AC
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
192
views
167
downloads
Cite This
An important inorganic phase of synthetic bone applications, calcium hydroxyapatite (HA, Ca-10(PO4)(6)(OH)(2)), was prepared as a single-phase ceramic powder. Carbonated HA powders were formed from calcium nitrate tetrahydrate and diammonium hydrogen phosphate salts dissolved in aqueous 'synthetic body fluid' (SBF) solutions, containing urea (H2NCONH2), at 37 degrees C and pH of 7.4, by using a novel chemical precipitation technique. These powders were also found to contain trace amounts of Na and Mg impurities in them, originated from the use of SBF solutions, instead of pure water, during their synthesis. The characterization and chemical analysis of the synthesized powders were performed by powder X-ray diffraction (XRD), Fourier-transformed infra-red spectroscopy (FT-IR), and inductively-coupled plasma atomic emission spectroscopy (ICP-AES).
Subject Keywords
Apatite
,
X-ray methods
,
Powders-chemical preparation
,
Calcium hydroxyapatite
URI
https://hdl.handle.net/11511/64542
Journal
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
DOI
https://doi.org/10.1016/s0955-2219(99)00132-6
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Biomimetic preparation of HA precursors at 37 degrees C in urea- and enzyme urease-containing synthetic body fluids
Bayraktar, D; Tas, AC (1999-12-01)
An important inorganic phase of synthetic bone applications, calcium hydroxyapatite (HA, Ca-10(PO4)(6)(OH)(2)), was prepared as a single-phase and sub-micron bioceramic powder. Carbonated HA precursors were synthesized from calcium nitrate tetrahydrate and diammonium hydrogen phosphate salts dissolved in "synthetic body fluid" (SBF) solutions, containing urea (H2NCONH2) and enzyme urease, under the biomimetic conditions of 37 degrees C and pH 7.4, by using a novel chemical precipitation technique.
Hydrothermal synthesis of hydroxyapatite from calcium sulfate hemihydrate
Bıngol, Onur Rauf; Durucan, Caner (2012-08-01)
Commercial grade calcium sulfate hemihydrate (CaSO4·0.5H2O, or plaster of paris, PoP) an economically feasible and abundant precursor has been used in (Ca10(PO4)6(OH)2, HAp) synthesis. The synthesis was realized by reacting solid PoP precursor with 1M of (NH4)2HPO4 aqueous solution, at ambient and mild hydrothermal conditions (2 ± 0.2 atm and 120 °C). The effect of reaction temperature and pressure on PoP to HAp conversion efficiencies and reaction kinetics has been reported. The formation of HAp at a react...
Synthesis of biomimetic Ca-hydroxyapatite powders at 37 degrees C in synthetic body fluids
Tas, AC (2000-07-01)
An important inorganic phase for synthetic bone applications, calcium hydroxyapatite (HA, Ca-10(PO4)(6)(OH)(2)), was prepared as a nano-sized (similar to 50 nm), homogeneous and high-purity ceramic powder from calcium nitrate tetrahydrate and diammonium hydrogen phosphate salts dissolved in modified synthetic body fluid (SBF) solutions at 37 degrees C and pH of 7.4 using a novel chemical precipitation technique. The synthesized precursors were found to easily reach a phase purity >99% after 6 h of calcinati...
Synthesis of calcium carbonate particles for biomedical applications
Oral, Çağatay Mert; Ercan, Batur; Department of Metallurgical and Materials Engineering (2020)
Calcium carbonate (CaCO3) particles have been widely used in biomedical applications owing to their biocompatibility and biodegradability. In order to effectively utilize CaCO3 particles in biomedical applications, their physical and chemical properties should be systematically controlled. However, this is a challenging task due to the presence of three different anhydrous CaCO3 polymorphs having complex crystallization behavior. In this thesis, CaCO3 particles were synthesized at distinct environments to c...
Fabrication and characterization of porous hydroxyapatite and biphasic calcium phosphate ceramic as bone substitutes
Koc, N; Timucin, M; Korkusuz, Feza (2004-01-01)
In the present study, the calcium phosphate powders (HAP, HAP-TCP) were produced by a precipitation technique involving the use of aqueous solutions of calcium nitrate and diammonium hydrogen phosphate. Preforms of calcium phosphate ceramics were produced by using a modified slip casting technique. Porosity in the cast and in the sintered ceramic was obtained through custom made PMMA beads similar to200-300 mum size. The green ceramic samples were prepared by suspending the apatite powder and PMMA beads in ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Bayraktar and A. Tas, “Chemical preparation of carbonated calcium hydroxyapatite powders at 37 degrees C in urea-containing synthetic body fluids,”
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
, pp. 2573–2579, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64542.