Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
TiB2-reinforced composite coating by gas tungsten arc welding
Date
2009-06-01
Author
YILMAZ, SEVAL
Ozenbas, M.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
171
views
0
downloads
Cite This
In situ synthesized TiB2-reinforced Fe-based coating was fabricated by gas tungsten arc welding (GTAW) on AISI-4340 steel substrate using cheaper Fe-Ti, Fe-Cr, Fe-W, Fe-B alloys and B2O3 powders. The effects of processing parameters on the coating were investigated experimentally. Primary dendrites of ferrite (alpha) phase and complex TiB2, Fe2B borides were detected at the coated surface. The experimental results show that either coated surface or interface microstructures were formed by the distribution of particularly boron and titanium concentration. The difference in hardness of the microstructures is specifically attributed to the type of borides. The type, dimension, and the volume concentration changes of borides were correlated with the parameters as the concentration of additives and the dilution from the base material. The surfaces were subsequently characterized by scanning electron microscopy (SEM), the energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), and differential thermal analysis (DTA).
Subject Keywords
Mechanical Engineering
,
General Materials Science
,
Mechanics of Materials
URI
https://hdl.handle.net/11511/65067
Journal
JOURNAL OF MATERIALS SCIENCE
DOI
https://doi.org/10.1007/s10853-009-3443-6
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Surfactant-modified multiscale composites for improved tensile fatigue and impact damage sensing
Yesil, Sertan; Winkelrnann, Charles; Bayram, Göknur; La Saponara, Valeria (Elsevier BV, 2010-10-25)
This paper documents the mechanical and electrical performance of self-sensing conductive polymer composites prepared with a low-cost technique and small hardware, able to considerably improve the dispersion and the surface adhesion of multi-walled carbon nanotubes (CNTs) in epoxy resin with respect to amine-modified CNTs and as-received CNTs. Surface treatment of the CNTs is performed using hexamethylene diamine, or a mix of sulfuric and nitric acid, and one of two surfactants (for the diamine treatment on...
Titanium-magnesium based composites: Mechanical properties and in-vitro corrosion response in Ringer's solution
ESEN, ZİYA; Dikici, Burak; Duygulu, Ozgur; Dericioğlu, Arcan Fehmi (Elsevier BV, 2013-06-20)
Ti-Mg composite rods exhibiting both bioinert and biodegradable characteristics have been manufactured by hot rotary swaging from elemental powders of titanium and magnesium. As a result of processing, spherical magnesium powders elongated in the direction of deformation and the dendritic structure in starting magnesium powders transformed into highly equiaxed grains. Magnesium particles in the outer layer of the composites were decorated by thin layer of MgO while the interior parts were free from oxides. ...
FeCrC, FeW, and NiAl Modified Iron-Based Alloy Coating Deposited by Plasma Transferred Arc Process
Yilmaz, Serdar Osman; Özenbaş, Ahmet Macit; Yaz, Mehmet (Informa UK Limited, 2011-01-01)
The technique of alloying X120Mn12 steel substrate by plasma transferred arc process was used for development of a surface having high wear resistance. High carbon ferrochromium, ferrotungsten, and nickel-aluminum intermetallic powders were combined to form M7C3 carbides inside Fe-based composite surface coating. The phase transformations on these coated surfaces were comprehensively examined by using a combination of scanning electron microscopy (SEM) with energy dispersive spectrometry microanalysis, diff...
CRACK-GROWTH KINETICS OF 7050-T73651 ALUMINUM-ALLOY UNDER CONSTANT LOAD AT 150-DEGREES-C
SARIOGLU, F; ABACHI, P; DORUK, M (Springer Science and Business Media LLC, 1993-03-15)
Crack growth tests at 150-degrees-C under constant load conditions were performed on compact tension specimens of 7050-T73651 aluminium alloy. The d.c. potential drop method was employed to monitor crack lengths throughout the tests. Fracture mechanics parameters such as the stress intensity factor (K) and energy-rate line integral (C*) were used to establish correlation with the crack propagation rates. As a result of experiments it was found that crack growth rates (da/dt) versus K, over discrete ranges o...
Mechanical and microstructural evaluations of hot formed titanium sheets by electrical resistance heating process
Ozturk, Fahrettin; Ece, Remzi Ecmel; Polat, Naki; Koksal, Arif; Evis, Zafer; Polat, Aytekin (Elsevier BV, 2013-08-20)
In this study, effect of temperature in the electrical resistance heating process on mechanical properties and microstructures of commercially pure titanium grade 2 (CP2) and Ti-6Al-4V (T64) alloy sheets was investigated. Sheets were successfully heated by the electric resistance heating process, and their mechanical properties and microstructures were evaluated. Ductilities of both materials were increased significantly after 400 degrees C. Results indicate that no significant change was observed in grain ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. YILMAZ and M. Ozenbas, “TiB2-reinforced composite coating by gas tungsten arc welding,”
JOURNAL OF MATERIALS SCIENCE
, pp. 3273–3284, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65067.