Energetics and structures of small clusters: Pt(N), N=2-21

2003-02-10
Sebetci, A
Guvenc, ZB
The Voter and Chen version of an embedded-atom model, derived by fitting to experimental data of both diatomic molecule and bulk platinum simultaneously, has been applied to study the locally stable structures, energies and growth patterns of small platinum clusters in the size range of N = 2-21. Using molecular dynamics and thermal quenching simulations, the global minima and the other locally stable structures have been distinguished from those stationary structures that correspond to saddle points of the potential energy surface. Ten thousand independent initial configurations generated at high temperatures (about 2600 K) were used to obtain the number of isomers and the probabilities of sampling different basins of attractions, for each size of the clusters. Their energy spectra have been analyzed. Comparisons have been made with the results of previous calculations using electronic structure and empirical potential methods. Although many of the lowest energy structures correspond to icosahedral growth, a number of new structures have been identified for N = 15, 16, 17, 18, 20 and 21. It has been found that the lowest energy structures are not always the most probable isomers for each size.
SURFACE SCIENCE

Suggestions

Atomic and electronic structure of group-IV adsorbates on the GaAs(001)-(1 x 2) surface
Usanmaz, D.; ÇAKMAK, MELEK; Ellialtıoğlu, Süleyman Şinasi (Elsevier BV, 2009-09-01)
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the atomic and electronic structure of the group-IV adsorbates (C, Si, Ge, Sn, and Pb) on the GaAs(001)-(1 x 2) surface considered in two different models: (i) non-segregated Ga-IV-capped structure and (ii) segregated structure in which the group-IV atoms occupying the second layer while the As atom floats to the surface. The non-segregated structure is energetically more favorable than the se...
Atomic and electronic structure of Sr/Si(001)-(2 x 2)
Cakmak, M.; Mete, E.; Ellialtıoğlu, Süleyman Şinasi (Elsevier BV, 2006-09-15)
The adsorption of Sr on the Si(001) surface with the semiantiphase dimer (2 x 2) reconstruction is studied, based upon the ab initio pseudopotential calculations. It is calculated that the sermantiphase dimer (2 x 2) reconstruction (2 dimers per unit cell) is more favorable than the (2 x 1) phase (I dimer per unit cell) by an energy of about 0.24 eV/dimer. Considering the energetically more stable reconstruction, we have assumed four possible locations for 1/4 monolayer (ML) Sr adsorption on this surface: (...
Thermodynamics of small platinum clusters
Sebetci, A; Guvenc, ZB; Kökten, Hatice (Elsevier BV, 2006-03-01)
Using the Voter and Chen version of an embedded atom model, derived by fitting simultaneously to experimental data of both the diatomic molecule and bulk platinum, we have studied the melting behavior of free, small platinum clusters in the size range of N = 15-19 in the molecular dynamics simulation technique. We present an atom-resolved analysis method that includes physical quantities such as the root-mean-square bond-length fluctuation and coordination number for individual atoms as functions of tempera...
The structure, energetics and melting behavior of free platinum clusters
Sebetci, Ali; Kökten, Hatice; Department of Physics (2004)
The Voter and Chen version of an embedded-atom model, derived by fitting to experimental data of both the diatomic molecule and bulk platinum simultaneously, has been applied to study the locally stable structures, energetics, growth patterns and melting behavior of free platinum clusters in the size range of N=2-56 and N=75. Using the constant-energy molecular dynamics simulations, thermal and conjugate-gradient minimization techniques, the global minima and the other locally stable structures have been di...
Energetics and stability of small SimCn clusters: AM1 and PM3 calculations
Erkoç, Şakir; Turker, L (2000-07-01)
The energetics and the structural stabilities of small SimCn clusters with m + n = 2-5 have been investigated by AM1 and PM3 type semi-empirical molecular orbital methods within the RHF formalizm. It has been found that small silicon-carbide clusters prefer the linear structure.
Citation Formats
A. Sebetci and Z. Guvenc, “Energetics and structures of small clusters: Pt(N), N=2-21,” SURFACE SCIENCE, pp. 66–84, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66029.