Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Bilateral CMUT Cells and Arrays: Equivalent Circuits, Diffraction Constants, and Substrate Impedance
Download
index.pdf
Date
2017-02-01
Author
KÖYMEN, Hayrettin
ATALAR, ABDULLAH
Tasdelen, A. Sinan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
198
views
0
downloads
Cite This
We introduce the large-signal and small-signal equivalent circuit models for a capacitive micromachined ultrasonic transducer (CMUT) cell, which has radiating plates on both sides. We present the diffraction coefficient of baffled and unbaffled CMUT cells. We show that the substrate can be modeled as a very thick radiating plate on one side, which can be readily incorporated in the introduced model. In the limiting case, the reactance of this backing impedance is entirely compliant for substrate materials with a Poisson's ratio less than 1/3. We assess the dependence of the radiation performance of the front plate on the thickness of the back plate by simulating an array of bilateral CMUT cells. We find that the small-signal linear model is sufficiently accurate for large-signal excitation, for the purpose of the determining the fundamental component. To determine harmonic distortion, the large-signal model must be used with harmonic balance analysis. Rayleigh-Bloch waves are excited at the front and back surfaces similar to conventional CMUT arrays.
Subject Keywords
Acoustics and Ultrasonics
,
Instrumentation
,
Electrical and Electronic Engineering
URI
https://hdl.handle.net/11511/66714
Journal
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL
DOI
https://doi.org/10.1109/tuffc.2016.2628882
Collections
Graduate School of Marine Sciences, Article
Suggestions
OpenMETU
Core
Capacitive micromachined ultrasonic transducer design for high power transmission
Bayram, Barış; Ergun, AS; Haeggstrom, E (Institute of Electrical and Electronics Engineers (IEEE), 2005-02-01)
Capacitive micromachined ultrasonic transducers (cMUTs) were developed to meet the demands of the ultrasonic industry. To achieve maximum efficiency, the conventional operation of the cMUT requires a bias voltage close to the collapse voltage. Total acoustic output pressure is limited by the efficiency of the cMUT and the maximum-allowed pulse voltage on the membrane. In this paper, we propose the collapse-snapback operation of the cMUT: the membrane is collapsed onto the substrate in the collapsing cycle, ...
Finite element modeling and experimental characterization of crosstalk in 1-D CMUT arrays
Bayram, Barış; Yaralioglu, Coksen G.; Oralkan, Omer; Ergun, Arif Sanli; Lin, Der-Song; Wong, Serena H.; Khuri-Yakub, Butrus T. (Institute of Electrical and Electronics Engineers (IEEE), 2007-02-01)
Crosstalk is the coupling of energy between the elements of an ultrasonic transducer array. This coupling degrades the performance of transducers in applications such as medical imaging and therapeutics. In this paper, we present an experimental demonstration of guided interface, waves in capacitive micromachined ultrasonic transducers (CMUTs). We compare the experimental results to finite element calculations using a commercial package (LS-DYNA) for a 1-D CMUT array operating in the conventional and collap...
Hybrid connection of RF MEMS and SMT components in an impedance tuner
Unlu, Mehmet; Topalli, Kagan; Atasoy, Halil Ibrahim; Demir, Şimşek; Aydın Çivi, Hatice Özlem; Akın, Tayfun (Elsevier BV, 2010-01-01)
This paper presents a systematic construction of a model for a hybrid connected RF MEMS and SMT components in a reconfigurable impedance tuner. The double stub hybrid impedance tuner which employs a high number of MEMS switches is selected to demonstrate the feasibility of the connections. In the hybrid tuner, MEMS switches are actuated with DC bias signals, where SMT resistors de-couple RF from the DC lines. The hybrid tuner is realized in two steps, where the MEMS impedance tuner is fabricated on a glass ...
Metamaterial absorber-based sensor embedded into X-band waveguide
SABAH, CUMALİ; TURKMEN-KUCUKSARİ, OZNUR; Sayan, Gönül (Institution of Engineering and Technology (IET), 2014-07-17)
A novel metamaterial sensor, integrated with an X-band waveguide, is proposed for high-resolution measurements of variations in the dielectric constant and/or the thickness of a superstrate layer that covers a pair of absorber unit cells. Variations in superstrate parameters are potentially caused by physical, chemical or biological factors, and can be detected by measuring the corresponding shifts in the resonance frequency of the metamaterial sensor. It is estimated by simulation results that resolution l...
Circumferential Traveling Wave Slot Array on Cylindrical Substrate Integrated Waveguide (CSIW)
Bayraktar, Omer; Aydın Çivi, Hatice Özlem (Institute of Electrical and Electronics Engineers (IEEE), 2014-07-01)
Traveling wave slot array on cylindrical substrate integrated waveguide (CSIW) is designed, fabricated and measured at K-band. CSIW is formed by wrapping the substrate integrated waveguide (SIW) around the cylinder in the circumferential direction. 16 element longitudinal slot array on the broad wall of single CSIW is designed by the Elliot's design procedure. The spacings between the slot elements are determined to reduce the half power beam width (HPBW) and to obtain good matching at 25 GHz. A 4 x 16 slot...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. KÖYMEN, A. ATALAR, and A. S. Tasdelen, “Bilateral CMUT Cells and Arrays: Equivalent Circuits, Diffraction Constants, and Substrate Impedance,”
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL
, pp. 414–423, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66714.