Prenatal ethanol intoxication and maternal intubation stress alter cell survival and apoptosis in the postnatal development of rat hippocampus

Download
2019-01-01
ELİBOL, BİRSEN
BEKER, MERVE
Sahbaz, Cigdern Dilek
Kilic, Ulkan
Jakubowska-Dogru, Ewa
It is well known that the fetal ethanol exposure and prenatal stress may have adverse effects on brain development. Interestingly, some morphological and functional recovery from their teratogenic effects that take place during brain maturation. However, mechanisms that underlie this recovery are not fully elucidated. The aim of this study was to examine whether the postnatal attenuation of fetal alcohol - and maternal stress-induced morphological and functional deficits correlates with compensatory changes in the expression/activation of the brain proteins involved in inflammation, cell survival and apoptosis. In this project, we investigated the hippocampus which belongs to the brain regions most susceptible to the adverse effects of prenatal ethanol exposure. Pregnant rat dams were administered ethanol (A) or isocaloric glucose solution (IC) by a gastric intubation during gestational days 7-20. The pure control group received ad libitum laboratory chow and water with no other treatment. The hippocampi of fetal-ethanol and control pups were examined at the postnatal day (PD)1, PD10, PD30 and PD60. Moderate fetal-ethanol exposure and prenatal intubation stress caused a significant increase in molecular factors relating to inflammation (iNOS) and cell survival/apoptosis pathways (PTEN, GSK-3 and ERK) at birth, with a rapid compensation from these developmental deficits upon removal of alcohol at PD10. Indeed, an increase in ERK1/2 and JNK1/2 activation at PD30 was observed with ethanol consumption. It indicates that the recovery process in A and IC brains started soon after the birth upon the ethanol and stressor withdrawal and continued until the adulthood.
ACTA NEUROBIOLOGIAE EXPERIMENTALIS

Suggestions

Chronic intracerebroventricular NGF administration improves working memory in young adult memory deficient rats
Jakubowska-Dogru, E; Gumusbas, U (Elsevier BV, 2005-07-01)
Although the beneficial effects of nerve growth factor (NGF) in age-related memory deficits are well documented, the therapeutic role of this neurotrophin in memory deficits occurring in young Subjects remains unclear. In the present study, the effect of chronic NGF administration on spatial working memory was investigated in young adult memory deficient Wistar rats. Memory deficient rats were selected on the basis of their preoperative performance in delayed matching-to-position task (DMTP) carried out in ...
Oligomerization and cell surface expression of recombinant GABA(A) receptors tagged in the delta subunit
Oflaz, Furkan Enes; Son, Çağdaş Devrim; Arslan, Ayla (IMR Press, 2019-12-01)
The gamma-Aminobutyric acid type A receptors (GABA(A) Rs) are heteropentameric chloride channels responsible for primary inhibition in the mammalian brain. Studies have shown the expression of recombinant GABA(A) R subunits tagged with the green fluorescent protein (GFP), a 26.9 kDa protein that exhibits bright green fluorescence when exposed to light in the blue to ultraviolet range. This allows the formation of recombinant proteins essential for the development of relevant in-vitro and in-vivo methodologi...
Neuroprotective Efficacy of the Peroxisome Proliferator-Activated Receptor-gamma Ligand in Chronic Cerebral Hypoperfusion
SAYAN ÖZAÇMAK, HALE; SAYAN, Hale; BARUT, FİGEN; Jakubowska-Dogru, Ewa (Bentham Science Publishers Ltd., 2011-08-01)
Chronic cerebral hypoperfusion can cause learning and memory impairment and neuronal damage resembling the effects observed in vascular dementia. PPAR-gamma agonists were shown to modulate inflammatory response and neuronal death following cerebral ischemia. The present study was designed to evaluate possible neuroprotective effects of rosiglitazone, a PPAR-gamma agonist, in rat model of chronic cerebral hypoperfusion. Cerebral hypoperfusion was induced by permanent bilateral occlusion of the common carotid...
Hippocampal levels of ChAT, PKA, phospho-PKA and phospho-CaMKII alpha but not CaMKII alpha positively correlate with spatial learning skills in rats
Gokcek-Sarac, Cigdem; Adalı, Orhan; Jakubowska-Dogru, Ewa (Elsevier BV, 2013-06-17)
Despite very extensive investigations on molecular processes underlying memory formation, there are very few studies examining potential differences in the brain biochemistry between "good" and "poor" learners belonging to a random population of young animals. In the present study, an attempt was made to correlate individual variation in spatial learning in young-adult Long-Evans rats with hippocampal levels of protein kinase A (PKA), calcium/calmodulin-dependent protein kinase II alpha (CaMKII alpha), and ...
Association analysis of Glutathione S-transferase omega-1 and omega-2 genetic polymorphisms and ischemic stroke risk in a Turkish population
Bilgin, Esra; Can Demirdöğen, Birsen; Ozcelik, Aysun Turkanoglu; Demirkaya, Seref; Adalı, Orhan (Informa UK Limited, 2019-01-01)
Objectives: Oxidative stress is a known risk factor for the pathogenesis of atherosclerosis, the main cause of ischemic stroke. Glutathione S-transferase (GST) omega-1 and omega-2, members of phase II enzymes, play a role in the antioxidant system. The single nucleotide polymorphisms (SNPs), C419A and A424G in GST omega genes can cause a decrease in enzyme activity. The aim of this study was to investigate the possible association between these polymorphisms and ischemic stroke risk in a Turkish population.
Citation Formats
B. ELİBOL, M. BEKER, C. D. Sahbaz, U. Kilic, and E. Jakubowska-Dogru, “Prenatal ethanol intoxication and maternal intubation stress alter cell survival and apoptosis in the postnatal development of rat hippocampus,” ACTA NEUROBIOLOGIAE EXPERIMENTALIS, pp. 133–147, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67925.