Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Efficient structural optimization for multiple load cases using adjoint sensitivities
Date
2001-03-01
Author
Akgun, MA
Haftka, RT
Wu, KC
Walsh, JL
Garcelon, JH
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
249
views
0
downloads
Cite This
Adjoint sensitivity calculation of stress, buckling, and displacement constraints may be much less expensive than direct sensitivity calculation when the number of load cases is large. In general, it is more difficult to implement the adjoint method than the direct method, but it is shown that the use of the continuum adjoint method, along with homogeneity conditions, can alleviate the problem. Expressions for von Mises stress and local buckling sensitivities For isotropic plate elements are derived. Computational efficiency of the adjoint method is sensitive to the number of constraints, and, therefore, the adjoint method benefits from constraint lumping. A continuum version of the Kreisselmeier-Steinhauser Functional is chosen to lump constraints. The adjoint and direct methods are compared for three examples: a truss structure, a small high-speed civil transport (HSCT) model, and a large HSCT model. These sensitivity derivatives are then used in optimization.
Subject Keywords
Aerospace Engineering
URI
https://hdl.handle.net/11511/67981
Journal
AIAA JOURNAL
DOI
https://doi.org/10.2514/2.1336
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Time-domain calculation of sound propagation in lined ducts with sheared flows
Özyörük, Yusuf (American Institute of Aeronautics and Astronautics (AIAA), 2000-05-01)
A recent application of the time-domain equivalent of the classical acoustic impedance condition, i.e., the particle displacement continuity equation, to numerical simulations of a Bow-impedance tube in the time domain yielded reasonably good results with uniform mean flows. The present paper extends this application to include sheared mean-flow effects on sound propagation over acoustically treated walls. To assess the prediction improvements with sheared flows, especially at relatively high Mach numbers, ...
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Estimation of pico-satellite attitude dynamics and external torques via Unscented Kalman Filter
Söken, Halil Ersin (FapUNIFESP (SciELO), 2014-01-01)
In this study, an Unscented Kalman Filter (UKF) algorithm is designed for estimating the attitude of a picosatellite and the in-orbit external disturbance torques. The estimation vector is formed by the satellite's attitude, angular rates, and the unknown constant components of the external disturbance torques acting on the satellite. The gravity gradient torque, residual magnetic moment, sun radiation pressure and aerodynamic drag are all included in the estimated external disturbance torque vector. The sa...
Computational study of subsonic flow over a delta canard-wing-body configuration
Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 1998-07-01)
Subsonic flowfields over a close-coupled, delta canard-wing-body configuration at angles of attack of 20, 24,2, and 30 deg are computed using the OVERFLOW Navier-Stokes solver Computed flowfields are presented in terms of particle traces, surface streamlines, and leeward-side surface pressure distributions for the canard-on and -off configurations. The interaction between the canard and the wing vortices, wing vortex breakdown, and the influence of the canard on vortex breakdown are identified, The comparis...
Accuracy and efficiency improvements in finite difference sensitivity calculations
Özhamam, Murat; Eyi, Sinan; Department of Aerospace Engineering (2007)
Accuracy of the finite difference sensitivity calculations are improved by calculating the optimum finite difference interval sizes. In an aerodynamic inverse design algorithm, a compressor cascade geometry is perturbed by shape functions and finite differences sensitivity derivatives of the flow variables are calculated with respect to the base geometry flow variables. Sensitivity derivatives are used in an optimization code and a new airfoil is designed verifying given design characteristics. Accurate sen...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Akgun, R. Haftka, K. Wu, J. Walsh, and J. Garcelon, “Efficient structural optimization for multiple load cases using adjoint sensitivities,”
AIAA JOURNAL
, pp. 511–516, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67981.