Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides
Download
index.pdf
Date
2018-10-01
Author
Saeidi, Shayan
Rasekh, Payman
Awan, Kashif M.
Tugen, Alperen
Huttunen, Mikko J.
Dolgaleva, Ksenia
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
226
views
117
downloads
Cite This
We report on the study of the third-order nonlinear optical interactions in InxGa1-xAsyP1-y/InP strip-loaded waveguides. The material composition and waveguide structures were optimized for enhanced nonlinear optical interactions. We performed self-phase modulation, four-wave mixing and nonlinear absorption measurements at the pump wavelength 1568 nm in our waveguides. The nonlinear phase shift of up to 2.5 pi has been observed in self-phase modulation experiments. The measured value of the two-photon absorption coefficient alpha(2) was 19 cm/GW. The four-wave mixing conversion range, representing the wavelength difference between maximally separated signal and idler spectral components, was observed to be 45 nm. Our results indicate that InGaAsP has a high potential as a material platform for nonlinear photonic devices, provided that the operation wavelength range outside the two-photon absorption window is selected.
Subject Keywords
Electrical and Electronic Engineering
,
General Computer Science
,
Atomic and Molecular Physics, and Optics
,
Electronic, Optical and Magnetic Materials
URI
https://hdl.handle.net/11511/68299
Journal
OPTICAL MATERIALS
DOI
https://doi.org/10.1016/j.optmat.2018.07.037
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal
AKGÖL, OĞUZHAN; ÜNAL, EMİN; ALTINTAŞ, OLCAY; KARAASLAN, MUHARREM; KARADAĞ, FARUK; Sabah, Cumali (Elsevier BV, 2018-01-01)
In this study, we both numerically and experimentally present a metasurface (MS) polarization converter to transform linearly polarized signal into circularly polarized one. The unit cell consists of two rectangular metallic patches placed at the crossed corners of rectangularly arranged inclusions. The results of a full-wave Electromagnetic (EM) simulator are compared to those of free space measurement using two horn antenna at microwave frequency regime. For a linearly polarized antenna, the s-parameters ...
Quantitative analysis of nonlinear dynamics of quantum light transmission in strongly coupled quantum dot-cavity systems
Tugen, Alperen; Kocaman, Serdar (Elsevier BV, 2019-04-01)
We compared transmission spectra of coupled high-Q cavity with quantum dot (QD) systems in the strong coupling regime with Input-Output Formalism (IOF) and Incoherent Pumping Mechanism (IPM) based on Lindblad master equation approach. The peak transmission of Dipole Induced Transparency (DIT) together with its full-width-half-maximum (FWHM) are enquired for detailed analysis. Both methods exhibit the same vacuum Rabi splitting in on-resonant case, in contrast, the peak of DIT is estimated smaller between 50...
Investigation of photovoltaic properties of amorphous InSe thin film based Schottky devices
Yilmaz, K.; Parlak, Mehmet; Ercelebi, C. (IOP Publishing, 2007-12-01)
In this study, device behavior of amorphous InSe thin films was investigated through I-V, C-V and spectral response measurements onto SnO2/p-InSe/metal Schottky diode structures. Various metal contacts such as Ag, Au, Al, In and C were deposited onto amorphous p-InSe films by the thermal evaporation technique. The best rectifying contact was obtained in a SnO2/p-InSe/Ag Schottky structure from I-V measurements, while the Au contact had poor rectification. Other metal contacts (Al, In and C) showed almost oh...
Study of vibrational modes in (Ga2S3)(x) - (Ga2Se3)(1-x) mixed crystals by Raman and infrared reflection measurements
Isik, M.; Guler, I.; Hasanlı, Nızamı (Elsevier BV, 2019-09-01)
Raman and infrared (IR) reflection characteristics were investigated in the frequency region of 100-450 cm(-1) for (Ga2S3)(x) - (Ga2Se3)(1-x) mixed crystals for compositions of x increasing from 0.0 to 1.0 by intervals of 0.25 obtained by Bridgman crystal growth technique. In the Raman spectra of these crystals four dominant peak features were observed while two bands were detected in the IR spectra of interest samples. Kramers-Kronig dispersion relations applied to IR spectra presented the frequencies of t...
Characterization of GZO thin films fabricated by RF magnetron sputtering method and electrical properties of In/GZO/Si/Al diode
Surucu, O. Bayrakli (Springer Science and Business Media LLC, 2019-11-01)
The main focus of this work is the structural and optical characterization of Ga-doped ZnO (GZO) thin film and determination of the device behavior of In/GZO/Si/Al diode. GZO thin films were deposited by RF magnetron sputtering technique from single target. The structural and morphological properties of GZO film were investigated by X-ray diffraction (XRD), Raman scattering, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analysis (EDS) measurements. Optical properties of the fil...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Saeidi, P. Rasekh, K. M. Awan, A. Tugen, M. J. Huttunen, and K. Dolgaleva, “Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides,”
OPTICAL MATERIALS
, pp. 524–530, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68299.