Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Poly( amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering
Date
2017-03-01
Author
Svobodova, Jana
Proks, Vladimir
Karabiyik, Ozge
Koyuncu, Ayse Ceren Calikoglu
Kose, Gamze Torun
Rypacek, Frantisek
Studenovska, Hana
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
380
views
0
downloads
Cite This
In this study, fibrous scaffolds based on poly(gamma-benzyl-L-glutamate) (PBLG) were investigated in terms of the chondrogenic differentiation potential of human tooth germ stem cells (HTGSCs). Through the solution-assisted bonding of the fibres, fully connected scaffolds with pore sizes in the range 20-400 mu m were prepared. Biomimetic modification of the PBLG scaffolds was achieved by a two-step reaction procedure: first, aminolysis of the PBLG fibres' surface layers was performed, which resulted in an increase in the hydrophilicity of the fibrous scaffolds after the introduction of N-5-hydroxyethyl-L-glutamine units; and second, modification with the short peptide sequence azidopentanoyl-GGGRGDSGGGY-NH2, using the 'click' reaction on the previously modified scaffold with 2-propynylside-chains, was performed. Radio-assay of the I-125-labelled peptide was used to evaluate the RGD density in the fibrous scaffolds ( which varied in the range 10(-3) -10 pM/cm(2)). All the PBLG scaffolds, especially with density 90 +/- 20 fM/cm(2) and 200 +/- 100 fM/cm(2) RGD, were found to be potentially suitable for growth and chondrogenic differentiation of HTGSCs. Copyright (C) 2015 John Wiley & Sons, Ltd.
Subject Keywords
Medicine (miscellaneous)
,
Biomaterials
,
Biomedical Engineering
URI
https://hdl.handle.net/11511/68384
Journal
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE
DOI
https://doi.org/10.1002/term.1982
Collections
Biomaterials and Tissue Engineering Application and Research Center (BİOMATEN), Article
Suggestions
OpenMETU
Core
Composite clinoptilolite/PCL-PEG-PCL scaffolds for bone regeneration: In vitro and in vivo evaluation
Pazarçeviren, Ahmet Engin; Altunbas, Korhan; Yaprakci, Volkan; Erdemli, Ozge; Keskin, Dilek; Tezcaner, Ayşen (Wiley, 2020-01-01)
In this study, clinoptilolite (CLN) was employed as a reinforcement in a polymer-based composite scaffold in bone tissue engineering and evaluated in vivo for the first time. Highly porous, mechanically stable, and osteogenic CLN/PCL-PEG-PCL (CLN/PCEC) scaffolds were fabricated with modified particulate leaching/compression molding technique with varying CLN contents. We hypothesized that CLN reinforcement in a composite scaffold will improve bone regeneration and promote repair. Therefore, the scaffolds we...
Magnesium doping on TiN coatings affects mesenchymal stem cell differentiation and proliferation positively in a dose-dependent manner
ÖNDER, Sakip; Calikoglu-Koyuncu, Ayse Ceren; Kazmanli, Kursat; Urgen, Mustafa; Kök, Fatma Neşe; KÖSE, GAMZE (IOS Press, 2018-01-01)
BACKGROUND: In vitro evaluation of cell-surface interactions for hard tissue implants have mostly been done using osteoblasts. However, when an implant is placed in the body, mesenchymal stem cells (MSCs) play a major role in new bone formation. Therefore, using MSCs in cell-surface investigations may provide more reliable information on the prediction of in vivo behavior of implants.
Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering
Türkkan, Sibel; Atila, Deniz; Akdağ, Akın; Tezcaner, Ayşen (Wiley, 2018-10-01)
In this study, novel porous three-dimensional (3D) scaffolds from silk fibroin (SF) and functionalized (amidated and oxidized) citrus pectin (PEC) were developed for skin tissue engineering applications. Crosslinking was achieved by Schiff's reaction in borax presence as crosslinking coordinating agent and CaCl2 addition. After freeze-drying and methanol treatment, plasma treatment (10 W, 3 min) was applied to remove surface skin layer formed on scaffolds. 3D matrices had high porosity (83%) and interconnec...
Microstructure, microhardness, and biocompatibility characteristics of yttrium hydroxyapatite doped with fluoride
Toker, S. M.; Tezcaner, Ayşen; Evis, Zafer (Wiley, 2011-02-01)
The current study focused on doping of hydroxyapatite (HA) with constant yttrium (Y3+) and varying fluoride (F-) compositions to investigate its microstructure, microhardness, and biocompatibility. HA was synthesized by precipitation method and sintered at 1100 degrees C for 1 h. Y3+ and F- ion dopings resulted in changes in densities. In x-ray diffraction analysis, no secondary phase formation was observed. Lattice parameters decreased upon ion substitutions. Scanning electron microscopy (SEM) results show...
Highly-sensitive and fast detection of human telomeric G-Quadruplex DNA based on a hemin-conjugated fluorescent metal-organic framework platform
Javan Kouzegaran, Vahid; Farhadi, Khalil; Forough, Mehrdad; Bahram, Morteza; Persil Çetinkol, Özgül (Elsevier BV, 2021-04-15)
© 2021 Elsevier B.V.The formation of G-quadruplex (G4) structures in Human telomeric DNA (H-Telo) has been demonstrated to inhibit the activity of telomerase enzyme that is associated with the proliferation of many cancer cells. Accordingly, G-quadruplex structures have become one of the well-established targets in anticancer therapeutic strategies. And, the development of simple and selective detection platforms for G4 structures has become a significant focus of research in recent years. In this study, a ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
J. Svobodova et al., “Poly( amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering,”
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE
, pp. 831–842, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68384.