Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles
Date
2017-09-01
Author
Özçelikkale, Altuğ
Linnes, Michael
Han, Bumsoo
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
228
views
0
downloads
Cite This
Advances in nanotechnology have enabled numerous types of nanoparticles (NPs) to improve drug delivery to tumors. While many NP systems have been proposed, their clinical translation has been less than anticipated primarily due to failure of current preclinical evaluation techniques to adequately model the complex interactions between the NP and physiological barriers of tumor microenvironment. This review focuses on microfluidic tumor models for characterization of delivery efficacy and toxicity of cancer nanomedicine. Microfluidics offer significant advantages over traditional macroscale cell cultures by enabling recapitulation of tumor microenvironment through precise control of physiological cues such as hydrostatic pressure, shear stress, oxygen, and nutrient gradients. Microfluidic systems have recently started to be adapted for screening of drugs and NPs under physiologically relevant settings. So far the two primary application areas of microfluidics in this area have been high-throughput screening using traditional culture settings such as single cells or multicellular tumor spheroids, and mimicry of tumor microenvironment for study of cancer-related cell-cell and cell-matrix interactions. These microfluidic technologies are also useful in modeling specific steps in NP delivery to tumor and characterize NP transport properties and outcomes by systematic variation of physiological conditions. Ultimately, it will be possible to design drug-screening platforms uniquely tailored for individual patient physiology using microfluidics. These in vitro models can contribute to development of precision medicine by enabling rapid and patient-specific evaluation of cancer nanomedicine. (C) 2017 Wiley Periodicals, Inc.
URI
https://hdl.handle.net/11511/69434
Journal
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY
DOI
https://doi.org/10.1002/wnan.1460
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Targeted delivery of CPG-oligodeoxynucleotide to breast cancer cells by poly-amidoamine dendrimer-modified magnetic nanoparticles
Taghavi Pourianazar, Negar; Gündüz, Ufuk; Gündüz, Güngör; Department of Biotechnology (2016)
One major application of nanotechnology in cancer treatment involves designing nanoparticles to deliver drugs, oligonucleotides, and genes to cancer cells. Nanoparticles should be engineered so that they could target and destroy tumor cells with minimal damage to healthy tissues. This research aims to develop an appropriate and efficient nanocarrier, having the ability of interacting with and delivering CpG-oligodeoxynucleotides (CpG-ODNs) to tumor cells. CpG-ODNs activate Toll-like receptor 9 (TLR9), which...
Investigation of in vitro cytotoxic effects of heparin coated iron oxide nanoparticles combined with tpp-dca on human hepatocellular carcinoma cell line HEPG2
Saraç, Başak Ezgi; Güray, Nülüfer Tülün; Volkan, Mürvet; Department of Biology (2018)
Nanotechnology in medicine involves the applications of nanoparticles and one of the rising field is cancer nanotechnology, which has been increasingly used in cancer diagnostics, imaging, and therapeutic drug delivery. The advantage of the use of the nanoparticles is that, they can be designed to be specific for tumor tissue. This allows increased drug delivery efficiency and reduced off-target toxicities. Iron oxide nanoparticles used in this study are smaller than 100 nm but still it gives an enhanced su...
In vitro and in vivo properties of graphene-incorporated scaffolds for bone defect repair
Jodati, Hossein; Yilmaz, Bengi; Evis, Zafer (2021-01-01)
The employment of graphene and its derivatives, graphene oxide and reduced graphene oxide, is extending from bioimaging and fabrications of biosensors to drug delivery and tissue engineering in the biomedical area. Graphene family-incorporated scaffolds, used in bone tissue engineering and bone regenerative medicine, profit superior properties of these materials, such as enhanced mechanical properties, large surface area, and the existence of functional groups. At the same time, problems related to cytotoxi...
CpG oligodeoxynucleotide- loaded PAMAM dendrimer-coated magnetic nanoparticles promote apoptosis in breast cancer cells
Pourianazar, Negar Taghavi; Gündüz, Ufuk (2016-03-01)
One major application of nanotechnology in cancer treatment involves designing nanoparticles to deliver drugs, oligonucleotides, and genes to cancer cells. Nanoparticles should be engineered so that they could target and destroy tumor cells with minimal damage to healthy tissues. This research aims to develop an appropriate and efficient nanocarrier, having the ability of interacting with and delivering CpG-oligodeoxynucleotides (CpG-ODNs) to tumor cells. CpG-ODNs activate Toll-like receptor 9 (TLR9), which...
In vitro characterization and nuclear delivery of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) based nanoparticles /
Şahin, Ayla; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin; Department of Biotechnology (2015)
The use of polymeric nanoparticles in life sciences as drug carrier vehicles has been expanding because of their ability to penetrate sites not accessible to larger particles and their large surface area-to-volume ratios that increase their drug release rates. The main objective of this study was to prepare nano sized polymeric particles to deliver active compounds across cell membranes and preferably into the nuclei. This would improve the biostability of macromolecular drugs (growth factors and polynucleo...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Özçelikkale, M. Linnes, and B. Han, “In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles,”
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY
, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69434.