Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
In vitro characterization and nuclear delivery of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) based nanoparticles /
Download
index.pdf
Date
2015
Author
Şahin, Ayla
Metadata
Show full item record
Item Usage Stats
263
views
96
downloads
Cite This
The use of polymeric nanoparticles in life sciences as drug carrier vehicles has been expanding because of their ability to penetrate sites not accessible to larger particles and their large surface area-to-volume ratios that increase their drug release rates. The main objective of this study was to prepare nano sized polymeric particles to deliver active compounds across cell membranes and preferably into the nuclei. This would improve the biostability of macromolecular drugs (growth factors and polynucleotides), and increase their efficacy. Nanocapsules of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) were prepared to study their penetration into the nuclei of Saos-2 human osteosarcoma and L929 cells. The polypeptide based nuclear targeting agent, Nuclear Localization Signal (NLS), was used to improve localization and an anticancer agent, Doxorubicin, was used to study the effectiveness of the PHBV nanoparticles as drug carriers.
Subject Keywords
Drug delivery systems.
,
Drug carriers (Pharmacy).
,
Biodegradation.
,
Doxorubicin.
,
Nanocapsules.
,
Nanoparticles.
URI
http://etd.lib.metu.edu.tr/upload/12619261/index.pdf
https://hdl.handle.net/11511/24878
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
In vitro and transdermal penetration of PHBV micro/nanoparticles
Eke, G.; Kuzmina, A. M.; Goreva, A. V.; Shishatskaya, E. I.; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat (2014-06-01)
The purpose of this study was to develop micro and nano sized drug carriers from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and study the cell and skin penetration of these particles. PHBV micro/nanospheres were prepared by o/w emulsion method and were stained with a fluorescent dye, Nile Red. The particles were fractionated by centrifugation to produce different sized populations. Topography was studied by SEM and average particle size and its distribution were determined with particle sizer. Cel...
Biopolymer based micro/nanoparticles as drug carriers for the treatment of skin diseases
Eke, Gözde; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin; Department of Micro and Nanotechnology (2011)
Controlled drug delivery systems are becoming increasingly interesting with the contribution of nanotechnology. In the case of transdermal applications the greatest limitation is the highly impermeable outermost layer of the skin, the stratum corneum. One promising method of controlled transdermal drug delivery of the skin therapeutics is the use of nanoparticles as carriers. Encapsulation of the drug, as opposed to classical topical application of creams or emulsions, allows the drug to diffuse into hair f...
Controlled doxorubicin delivery from photoresponsive liposomes carrying vitamin A derivatives /
Heper, Senem; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin; Department of Biotechnology (2014)
Drug delivery systems (DDS) have been an attractive approach to eliminate the drawbacks of conventional drug administration. Controlled and photoresponsive drug delivery systems have a special advantage; they deliver drugs more effectively. Liposomes are mostly preferred as drug carriers due to their ability to carry both hydrophilic and hydrophobic drugs, their being non-toxic and non-immunogenic. In this study, photoresponsive liposomes were prepared by incorporating vitamin A derivatives into the lipid b...
Inclusion of celecoxib in the MCM – 41 mesoporous silica: drug loading and release property
Günaydin, Şahika; Yılmaz, Ayşen; Department of Chemistry (2014)
Mesoporous silica particles have been used to enhance the biocompability of the drugs and provide control drug release. Celecoxib was chosen as a model drug which is poorly water soluble non-steroidal anti-inflammatory drug. In this study, in order to determine the morphology effect on the drug loading capacity of the silica particles and release properties of the drug, MCM-41 particles were synthesized with different particle size, pore volume and surface properties. MCM-41-1 and MCM-41-2 labeled particles...
In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles
Özçelikkale, Altuğ; Linnes, Michael; Han, Bumsoo (2017-09-01)
Advances in nanotechnology have enabled numerous types of nanoparticles (NPs) to improve drug delivery to tumors. While many NP systems have been proposed, their clinical translation has been less than anticipated primarily due to failure of current preclinical evaluation techniques to adequately model the complex interactions between the NP and physiological barriers of tumor microenvironment. This review focuses on microfluidic tumor models for characterization of delivery efficacy and toxicity of cancer ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Şahin, “In vitro characterization and nuclear delivery of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) based nanoparticles /,” M.S. - Master of Science, Middle East Technical University, 2015.