Craniofacial implants

The present invention relates to development of a porous implant type which eventually melts off and replaced with new leaves growing tissue to cover craniofacial defects in the body and shaping of the same with rapid prototyping and lyophilization methods.


Use of nanoscale-delivery systems in tissue/organ regeneration
Fathi Achachelouei, Milad; Keskin, Dilek; Tezcaner, Ayşen (Elsevier Science, Oxford/Amsterdam , 2020-04-01)
iomaterials for Organ and Tissue Regeneration: New Technologies and Future Prospects examines the use of biomaterials in applications related to artificial tissues and organs. With a strong focus on fundamental and traditional tissue engineering strategies, the book also examines how emerging and enabling technologies are being developed and applied. Sections provide essential information on biomaterial, cell properties and cell types used in organ generation. A section on state-of-the-art in organ regenera...
Nanobiomaterials: a review of the existing science and technology, and new approaches
Hasırcı, Vasıf Nejat; Zorlutuna, P.; Ndreu, A.; Yilgor, P.; Basmanav, F. B.; Aydin, E. (2006-01-01)
Nanotechnology has made great strides forward in the creation of new surfaces, new materials and new forms which also find application in the biomedical field. Traditional biomedical applications started benefiting from the use nanotechnology in an array of areas, such as biosensors, tissue engineering, controlled release systems, intelligent systems and nanocomposites used in implant design. In this manuscript a review of developments in these areas will be provided along with some applications from our la...
PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering
Malikmammadov, Elbay; Endoğan Tanır, Tuğba; Kızıltay, Aysel; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2018-01-01)
Scaffolds produced for tissue engineering applications are proven to be promising alternatives to be used in healing and regeneration of injured tissues and organs. In this study, porous and fibrous poly(epsilon-caprolactone) (PCL) scaffolds were prepared by wet spinning technique and modified by addition of tricalcium phosphate (TCP) and by immobilizing gelatin onto fibers. Meanwhile, gelatin microspheres carrying Ceftriaxone sodium (CS), a model antibiotic, were added onto the scaffolds and antimicrobial ...
Metabolomics analysis of iPSCs derived organoids
Sarı , Vedat; Koçak , Gamze; Reçber, Tuba; Karakülah , Gökhan; Utine , Canan Aslı; Nemutlu , Emirhan; Güven, Sinan (Orta Doğu Teknik Üniversitesi Enformatik Enstitüsü; 2022-10)
Regenerative medicine is focused on functional restoration of a particular tissue and organs. Stem cell based miniaturized heterogenous cellular clusters named organoids, exhibit features of organ functionality, self-organization, multicellularity, and utility. Induced pluripotent stem cells (iPSCs), have great potential to develop organoids of specific tissues and utilized in regenerative medicine. Organoid technologies have revolutionized the approach to human development and diseases, providing outstandi...
Enhancing biocompatibility of tantalum via anodization for orthopedic applications
Uslu, Ece; Ercan, Batur (null; 2018-12-06)
Tantalum and its alloys have been investigated as the next generation of orthopedic implant materials in the last decade. Being a valve metal, tantalum forms a naturally occurring stable oxide layer approximately 3-5 nm on its surface at ambient conditions and this layer both prevents heavy ion release from the metal and provides a natural barrier for implant corrosion. In fact, due to its chemically inert nature, tantalum has the highest corrosion resistance of all metals used in orthopedic applications. T...
Citation Formats
V. N. Hasırcı and N. Hasırcı, “Craniofacial implants,” 00, 2014.