Use of nanoscale-delivery systems in tissue/organ regeneration

2020-04-01
Fathi Achachelouei, Milad
Keskin, Dilek
Tezcaner, Ayşen
iomaterials for Organ and Tissue Regeneration: New Technologies and Future Prospects examines the use of biomaterials in applications related to artificial tissues and organs. With a strong focus on fundamental and traditional tissue engineering strategies, the book also examines how emerging and enabling technologies are being developed and applied. Sections provide essential information on biomaterial, cell properties and cell types used in organ generation. A section on state-of-the-art in organ regeneration for clinical purposes is followed by a discussion on enabling technologies, such as bioprinting, on chip organ systems and in silico simulations.

Suggestions

Integrated biomimetic scaffolds for soft tissue engineering
Güven, Sinan; Hasırcı, Nesrin; Department of Biotechnology (2006)
Tissue engineering has the potential to create new tissue and organs from cultured cells for transplantation. Biodegradable and biocompatible scaffolds play a vital role in the transfer of the cultured cells to a new tissue. Various scaffolds for soft tissue engineering have been developed, however there is not any structure totally mimicking the natural extracellular matrix (ECM), ready to use. In this study biodegradable and biocompatible scaffolds were developed from natural polymers by tissue engineerin...
Wet spun PCL scaffolds for tissue engineering
Malikmammadov, Elbay; Hasırcı, Nesrin; Endoğan Tanır, Tuğba; Department of Micro and Nanotechnology (2017)
Scaffolds produced for tissue engineering applications are promising alternatives to be used in healing and regeneration of injured tissues and organs. In this study, fibrous poly(ε-caprolactone) (PCL) scaffolds were prepared by wet spinning technique and modified by addition of β-tricalcium phosphate (β-TCP) and by immobilizing gelatin onto fibers. Meanwhile, gelatin microspheres carrying Ceftriaxone sodium (CS), a model antibiotic, were added onto the scaffolds and antimicrobial activity of CS was investi...
Role of Vibrational Spectroscopy in Stem Cell Research
Aksoy, Ceren; Severcan, Feride (2012-01-01)
Recent researches have mainly displayed the significant role of stem cells in tissue renewal and homeostasis with their unique capacity to develop different cell types. These findings have clarified the importance of stem cells to improve the effectiveness of any cell therapy for regenerative medicine. Identification of purity and differentiation stages of stem cells are the greatest challenges of stem cell biology and regenerative medicine. The existing methods to carefully monitor and characterize the ste...
FABRICATION OF MAGNETIC BIOACTIVE GLASS NANOPARTICLES
Taşar, Cansu; Ercan, Batur; Department of Metallurgical and Materials Engineering (2022-8-18)
Different compositions of bioactive glass nanoparticles have been investigated for various applications, including cancer treatment, drug delivery, bone regeneration, etc. However, targeting of bioactive glass nanoparticles to desired tissues still remains to be a challenge. In this research, sol-gel synthesized bioactive glass and superparamagnetic iron oxide nanoparticles (SPIONs) were combined using two different approaches to obtain magnetic bioactive glass nanoparticle composites. In the first ap...
Targeted delivery of CPG-oligodeoxynucleotide to breast cancer cells by poly-amidoamine dendrimer-modified magnetic nanoparticles
Taghavi Pourianazar, Negar; Gündüz, Ufuk; Gündüz, Güngör; Department of Biotechnology (2016)
One major application of nanotechnology in cancer treatment involves designing nanoparticles to deliver drugs, oligonucleotides, and genes to cancer cells. Nanoparticles should be engineered so that they could target and destroy tumor cells with minimal damage to healthy tissues. This research aims to develop an appropriate and efficient nanocarrier, having the ability of interacting with and delivering CpG-oligodeoxynucleotides (CpG-ODNs) to tumor cells. CpG-ODNs activate Toll-like receptor 9 (TLR9), which...
Citation Formats
M. Fathi Achachelouei, D. Keskin, and A. Tezcaner, Use of nanoscale-delivery systems in tissue/organ regeneration. 2020, p. 162.