Aluminum Induced Nanotexturing of Glass Superstrate for Enhanced Photo-Response of a-Si:H Thin Film

2014-06-17
Texturing the glass surface has the potential to significantly improve the performance of thin film solar cells. In this work, we investigate the effect aluminum induced texturing at nanoscale (AIT) on the optical, topographical, and morphological properties of Sodalime glass superstrate. As revealed by scanning electron microscope (SEM) and atomic force microscope (AFM), a laterally uniform surface morphology of the AIT texture was obtained. Our experimental results show that the surface roughness and thus the transmission haze can be controlled by adjusting the AIT process parameters. The obtained textured glass superstrate with the highest transmission haze will be employed to enhance the photocurrent of a-Si:H thin film.
10th Nanoscience and Nanotechnology Conference, 2014

Suggestions

Aluminum induced texturing of sandy and prism glasses: Combination of micro/nano texture with macro texture
Ünal, Mustafa; Donerscark, Ergi; Ozkol, Engin; Turan, Raşit (2017-08-01)
Aluminum induced texturing (AIT) is one of the most promising texturing methods, which can be applied on glass substrates for solar cell applications. Combination of different dimensional structures exhibits the opportunity to achieve enhanced light trapping schemes. Here in this study, float glass and macro textured sandy and prism glasses went through Aluminum induced texturing (AIT) process in order to enhance light management. Surface morphologies were investigated by FE-SEM and optical measurements in ...
Nickel assisted chemical etching for multi-crystalline Si solar cell texturing: a low cost single step alternative to existing methods
Takaloo, Ashkan Vakilipour; ES, FIRAT; BAYTEMİR, Gulsen; Turan, Raşit (2018-07-01)
The texturing of silicon surfaces is a well-known method of reducing the reflection from the surface of crystalline Si solar cell devices. With the utilization of diamond wires in recent advances in wafer slicing technology, surface texturing for the multi-crystalline Si wafers by the traditional acid-based texturing technique has become difficult. Metal-Assisted Etching (MAE) has been shown to be a promising and low-cost alternative to the traditional acid-based isotropic texturing. This paper reports, for...
Electrical response of electron selective atomic layer deposited TiO2-x heterocontacts on crystalline silicon substrates
Ahiboz, Doguscan; Nasser, Hisham; Aygun, Ezgi; Bek, Alpan; Turan, Raşit (IOP Publishing, 2018-04-01)
Integration of oxygen deficient sub-stoichiometric titanium dioxide (TiO2-x) thin films as the electron transporting-hole blocking layer in solar cell designs are expected to reduce fabrication costs by eliminating high temperature processes while maintaining high conversion efficiencies. In this paper, we conducted a study to reveal the electrical properties of TiO2-x thin films grown on crystalline silicon (c-Si) substrates by atomic layer deposition (ALD) technique. Effect of ALD substrate temperature, p...
Transparent thin film heaters based on silver nanowire networks
Ergün, Orçun; Ünalan, Hüsnü Emrah; Department of Metallurgical and Materials Engineering (2015)
Transparent thin film heaters are used in various de-fogging and de-icing applications because of their ability to convert electrical energy to thermal energy while allowing to transmit solar light through a surface. Indium tin oxide (ITO) is the conventional transparent conducting material used in transparent thin film heaters. However, due to scarcity of indium and its increasing prices worldwide, coupled with the inflexibility of ITO, alternative materials are being investigated. Silver nanowire networks...
Copper nanowire network based transparent thin film heaters
Tigan, Doğancan; Ünalan, Hüsnü Emrah; İmer, Muhsine Bilge; Department of Metallurgical and Materials Engineering (2018)
Metallic nanowire random networks are highly promising as transparent thin film heaters (TTFHs) due to their significant optoelectronic performance and thermal conductivity. Typically silver nanowires (Ag NWs) are utilized as TTFHs but in recent years, copper nanowires (Cu NWs) started to replace them in many applications as an economic alternative. The electrical conductivity of Cu is almost equal to that of Ag and it is much cheaper than Ag at least in bulk form. However, stability of Cu NWs is a lot poor...
Citation Formats
M. Ünal, “Aluminum Induced Nanotexturing of Glass Superstrate for Enhanced Photo-Response of a-Si:H Thin Film,” presented at the 10th Nanoscience and Nanotechnology Conference, 2014, İstanbul, Türkiye, 2014, Accessed: 00, 2021. [Online]. Available: http://nanotr10.net/dokuman/NanoTR10_Abstract_Book.pdf.