Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Proposed minimum restoring force requirements for seismic isolated structures
Date
2021-02-01
Author
Dicleli, Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
249
views
0
downloads
Cite This
In this research study, a new set of restoring force equations are proposed for seismic isolated structures subjected to far fault ground motions (FFGM) and near fault ground motions (NFGM). For this purpose, 110 FFGM and 49 NFGM are selected. Then, nonlinear time history analyses (NLTHA) of SDOF seismic isolated structures are performed using the selected ground motions to obtain their residual and maximum displacements. The analyses are repeated for an extensive range of parameters including peak ground acceleration, A(p), characteristic strength, Q(d) and post elastic period, T-d, of the isolation system. Next, the variations of the residual and maximum displacements are plotted as functions of the various combinations of the parameters considered in the analyses. Then, nonlinear regression analyses are performed to formulate the residual and maximum displacements as functions of the parameters considered in the analyses. The developed equations are then used to formulate the upper limits of T-d (restoring force equations) to ensure reasonable levels of residual and maximum isolator displacements. The developed restoring force equations are then compared with those of AASHTO and Eurocode-8 (EC-8) using the pool of residual and maximum displacement data obtained from NLTHA. It is observed that using the restoring force equations of AASHTO and EC-8 to check the design of seismic-isolated structures may, in some cases, produce unreasonably large levels of residual and maximum displacements. However, when the restoring force requirements proposed in this research study are applied, the residual and maximum displacements are observed to be within reasonable ranges.
URI
https://hdl.handle.net/11511/88817
Journal
ENGINEERING STRUCTURES
DOI
https://doi.org/10.1016/j.engstruct.2020.111549
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
Proposed minimum restoring force equations for seismic isolated structures
Görgülü, Ali Günalp; Dicleli, Murat; Department of Engineering Sciences (2019)
In this research study, a new set of restoring force equations are proposed for seismic isolated structures subjected to far fault ground motions (FFGM) and near fault ground motions (NFGM). For this purpose, 110 FFGM and 49 NFGM are selected. Then, nonlinear time history analyses (NLTHA) of SDOF seismic isolated structures are performed using the selected ground motions to obtain their residual and maximum displacements. The analyses are repeated for an extensive range of parameters including peak ground a...
Development of design equations to estimate live load effects in hammer-head bridge piers
Demir, Çağrı.; Dicleli, Murat; Department of Engineering Sciences (2019)
In this study, design equations are proposed to calculate the internal forces in hammer-head bridge pier components under the effect of live loads. For this purpose, first a four span benchmark bridge representative of the bridges in the US is selected. Finite element model (FEM) of a benchmark bridge is built, and sensitivity analyses are performed on the bridge model to identify the bridge parameters affecting the magnitude and distribution of the girder live load support reactions and hence the internal ...
A study on major seismological and fault-site parameters affecting near-fault directivity ground-motion demands for strike-slip faulting for their possible inclusion in seismic design codes
Akkar, Sinan; MOGHIMI, SAED; Arıcı, Yalın (2018-01-01)
We investigate the role of major seismological (magnitude, pulse period, fault length, seismic activity, orientation of incident seismic wave with respect to fault-strike) and geometrical (fault-site geometry) parameters to understand the variations in ground-motion demands due to near-fault directivity (NFD) effects. To this end, we used a suite of probabilistic strike-slip earthquake scenarios and established the elastic spectral amplitude distributions conditioned on the above investigated parameters. Th...
Probabilistic seismic hazard assessment for east anatolian fault zone using planar source models
Menekşe, Akın; Gülerce, Zeynep; Department of Civil Engineering (2015)
The objective of this study is to perform probabilistic seismic hazard assessment (PSHA) using planar seismic source characterization models for East Anatolian Fault Zone (EAFZ) and to update the design ground motions to be used in the region. Development of planar seismic source models requires the definition of source geometry in terms of fault length, fault width, fault plane angles and segmentation points for each segment and associating the observed seismicity with defined fault systems. This complicat...
An investigation of liquefaction effects on piers and piles of segmental precast balanced cantilever bridges
Gündüz, Özer; Caner, Alp; Department of Earthquake Studies (2019)
In this thesis, the seismic behavior of a typical segmental precast balanced cantilever bridge over liquefiable soils is investigated. Liquefaction is a phenomenon that is triggered by large movements of the sand layer during earthquakes and cause damage to structures. The subject is still under investigation, approaches for liquefaction induced lateral spreading calculations can be found in the literature. Inertial and kinematic effects of the lateral spreading were studied with a total of four different a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Dicleli, “Proposed minimum restoring force requirements for seismic isolated structures,”
ENGINEERING STRUCTURES
, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/88817.