Theory and applications of surface plasmon resonance sensors

Özdemircan, Furkan
In this thesis, the electromagnetic theory of the surface plasmon resonance (SPR) phenomenon and its applications in optical sensing are investigated. An SPR sensor's operation is based on the excitation of surface plasmon waves (SPWs) at an interface between two different media, a metal layer, and a dielectric layer, with real parts of dielectric constants having opposite signs. The presence of the SPR shows itself with a sharp minimum in the reflection curve of the sensor that is operated by either the angular interrogation approach or the wavelength interrogation approach. The minimum SPR reflection location is highly sensitive to variations in relative permittivity and thickness parameters of the material layers. Even small changes in any one of these parameters can be accurately sensed by measuring the corresponding shift in the minimum point of the SPR reflection curve's location. Using the prism-based coupling method for the excitation of SPWs, the three-layer SPR sensor structure composed of the prism, the thin metal film, and the bulk dielectric layer is investigated by both analytical solutions and numerical simulations. Dielectric function models of different metals widely used in SPR sensors are included in the analyses to compare resulting sensor designs' performances. The feasibility of multi-purpose sensing with the same SPR topology is also investigated via numerical CST simulations using multi-section receptor patches in the sensing dielectric layer to detect the presence of different types of test targets in a given sample solution.


Modeling and Predicting Surface Roughness via Transformation Optics
Ozgun, O.; Kuzuoğlu, Mustafa (2014-08-28)
Monte Carlo analysis of surface roughness in electromagnetic scattering problems is presented by using the principles of transformation electromagnetics/optics in finite methods. The main motivation in the proposed approach is to eliminate the need of mesh generation for each surface in repeated Monte Carlo realizations, and hence, to devise a faster model in predicting surface roughness. A single, simple and uniform mesh is employed assuming a smooth surface and ignoring the actual surface, and thereafter,...
Theoretical investigation of intersubband nonlinear optical rectification in AlxlGa1-xlAs/GaAs/AlxrGa1-xrAs asymmetric rectangular quantum wells
Karabulut, Ibrahim; Atav, Uelfet; Safak, Haluk; Tomak, Mehmet (Wiley, 2007-09-01)
In this study, a theoretical investigation of intersubband nonlinear optical rectification in Alx1Ga1-x1As/ GaAs/AlxrGa1-xrAs asymmetric rectangular quantum wells is presented. The electronic states in the asymmetric rectangular quantum well are described within the framework of the envelope function approach including the effects of band nonparabolicity and the effective mass mismatch. The nonlinear optical rectification is calculated using the density matrix formalism. It is found that the nonlinear optic...
Influence of nanoparticle shape on colloidal plasmonic interface properties
Sarıgül, Elif; Bek, Alpan; Department of Physics (2014)
Nanoparticles bearing free charges, interact very strongly with incoming electromagnetic radiation at certain frequencies called the plasmon resonance frequencies, depending on the size, shape and material properties of the particle and the medium. In order to enhance the light scattering by a two dimensional network of such plasmonic nanoparticles several strategies can be followed. In this thesis, it was pursued the fabrication and characterization of the nanoparticle decorated surfaces by colloidal solut...
Characterization of Ag/TlInSe2/Ag structure
QASRAWI, ATEF FAYEZ HASAN; Hasanlı, Nızamı (Wiley, 2011-07-01)
In this work, the current voltage characteristics of Ag/TlInSe2/Ag and In/TlInSe2/In structures, the incident light intensity and time dependencies of photocurrent as well as the response time-illumination intensity dependence of Ag/TlInSe2/Ag structures have been studied. For bias voltages larger than 1200. and 4.0 V, the current injection was found to be space charge limited and was assigned to the existing of deep and shallow hole traps being located at 210 and 16 meV for Ag and In-contacted samples, res...
Effects of array guided surface waves on radiation characteristics of a finite planar printed dipole array
Aydın Çivi, Hatice Özlem; Pathak, PH (2004-06-26)
The presence of surface waves different from the conventional grounded dielectric substrate surface wave modes, which can be excited on a finite periodic radiating array of printed dipoles, at frequencies for which the spacing between dipoles is typically less than half a wavelength is studied. The effects of such array guided surface waves on the array radiation characteristics are investigated. Techniques to suppress these surface waves are also discussed.
Citation Formats
F. Özdemircan, “Theory and applications of surface plasmon resonance sensors,” M.S. - Master of Science, Middle East Technical University, 2021.