Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Artificial neural network based tool for buckling loads of integrally stiffened aircraft structural panels
Download
12626181.pdf
Date
2021-2-15
Author
Güzel, Selçuk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
234
views
173
downloads
Cite This
The sudden change in the load carrying capacityunder compresive loading, called buckling,may cause catastrophic failures. Therefore, determination of the first buckling and collapse loads of structural elements is essentialin preliminary design stages. Finite element (FE)analyses and structural testing are used to determine buckling characteristics of a structural element. However, in early design stages, FE analyses are time consuming and structural testing is costly. In this study, an artificial neural network tool(ANN)is used to reduce computational effort to determine buckling loads of integrally stiffened structural panels in early design stages. Reuslts of FE analyses are employed to train the ANN. Moreover, Latin Hypercube Sampling (LHS) methodology is used to reduce the number of required FE analyses to generate database that artificial neural network is based on. Finally, a Multi-fidelity samplingalgorithmthat uses FE models with different mesh resolutionsis implemented for generation of the ANN database in order to reduce computational time spent for finite element analyses. Mean errors and fit performance model results are compared to determine accuracy of the neural network results.
Subject Keywords
Structural optimization
,
Artificial neural network
,
Integrally stiffened structures
,
Multi fidelity sampling algorithm
,
Latin hypercube sampling
URI
https://hdl.handle.net/11511/89833
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Thermal changes in an artificial lake simulated using a one-dimensional numerical model
Tokyay Sinha, Talia Ekin; Yetgin, Mehmet Yücel (LookUs Bilisim A.S., 2019)
Bu çalışma yüksek sıcaklıktaki suyun göl ve rezervuar gibi akıntısız su kütlelerine verilmesini incelemektedir. Sayısal çalışmada PROBE isimli bir boyutlu (1B) sonlu hacim yazılımı kullanılmıştır. Yazılım, yüksek sıcaklıktaki suyun ve rüzgârın göl içindeki karışma süreçlerine etkisine, Koriolis etkisine ve güneş ışınımı etkisine açıklamalar getirmektedir. Bu koşullar termik santrallerdeki (kömür, doğalgaz, nükleer vb.) soğutma işlemleriyle alakalıdır. Mevsimsel doğal tabakalaşma ve termoklin oluşumu ...
Intercultural Sensitivity Levels of Prospective Teachers
Özbek, Özlem Yeşim; Taneri, Pervin Oya (null; 2019-10-20)
Okullardaki akran zorbalığının sebepleri ve etkileri konusunda kapsamlı ilk araştırmalar, 1970'lerde Olweus tarafından yapılmaya başlamıştır. Günümüzde de halen kabul gören tanımıyla zorbalık; bir kişinin, diğer bir kişi veya kişiler tarafından kasıtlı, tekrarlı ve en azından bir süre devam eden olumsuz davranışlarla karşı karşıya bırakılması durumudur. Akran zorbalığı ve zorbalığı önleyici programlar dünyada uzun süredir tartışılıyor olmasına rağmen, Türkiye’de son yıllarda önem kazanmaya başlayan bir konu...
Experimental investigation of the effect of temperature on friction pressure loss of polymeric drilling fluid through vertical concentric annulus
Gürçay, Kazım Onur; Akın, Serhat; Gücüyener, İsmail Hakkı; Department of Petroleum and Natural Gas Engineering (2018)
Accurate estimation of friction pressure loss through annulus is important to avoid lost circulation, pipe sticking, kicks or more serious problems in drilling and well completion operations. Several studies have been performed to determine friction pressure loss experimentally and theoretically through pipe and annulus with the effects of eccentricity, pipe rotation, annulus geometry or flow regime by applying several rheological models. However, in addition to all of these factors, fluid rheology is depen...
Investigation of pre-service teachers’ self-efficacy beliefs and attitudes toward teaching profession through canonical analysis
Tarkın, Ayşegül; Kondakçı, Esen (2012-03-01)
Bu çalışmanın amacı öğretmen adaylarının özyeterlik inançları ile öğretmenlik mesleğine yönelik tutumları arasındaki ilişkiyi incelemektir. Çalışmaya son sınıfta öğrenim görmekte olan 315 öğretmen adayı katılmıştır. Veri toplamak için Öğretmen Özyeterlik Ölçeği ve Öğretmenlik Mesleğine Karşı Tutum Ölçeği kullanılmıştır. Kanonik korelasyon analizi sonuçları öğrenciyi derse katmaya ve öğretim yöntemlerini kullanmaya dair yüksek özyeterliğe sahip öğretmen adaylarının öğretmenlik mesleğini daha çok sevdiğini gö...
Simulation of frictional sliding under impact shear loading
Çöker, Demirkan; Lykotrafitis, George; Rosakis, Ares J. (2004-12-01)
Results from recent and ongoing investigations of frictional sliding under dynamic loading conditions are discussed. The configuration analyzed consists of two identical elastic plates with an interface characterized by a rate- and state-dependent frictional law. The calculations are carried out within a frame-work where two constitutive relations are used: a volumetric constitutive relation between stress and strain and a surface constitutive relation that characterizes the frictional behavior of the inter...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Güzel, “Artificial neural network based tool for buckling loads of integrally stiffened aircraft structural panels,” M.S. - Master of Science, Middle East Technical University, 2021.