Impaired inhibitory GABAergic synaptic transmission and transcription studied in single neurons by Patch-seq in Huntington's disease

2021-05-11
Paraskevopoulou, Foteini
Parvizi, Poorya
Senger, Gokce
Tunçbağ, Nurcan
Rosenmund, Christian
Yildirim, Ferah
Transcriptional dysregulation in Huntington's disease (HD) causes functional deficits in striatal neurons. Here, we performed Patchsequencing (Patch-seq) in an in vitro HD model to investigate the effects of mutant Huntingtin (Htt) on synaptic transmission and gene transcription in single striatal neurons. We found that expression of mutant Htt decreased the synaptic output of striatal neurons in a cell autonomous fashion and identified a number of genes whose dysregulation was correlated with physiological deficiencies in mutant Htt neurons. In support of a pivotal role for epigenetic mechanisms in HD pathophysiology, we found that inhibiting histone deacetylase 1/3 activities rectified several functional and morphological deficits and alleviated the aberrant transcriptional profiles in mutant Htt neurons. With this study, we demonstrate that Patch-seq technology can be applied both to better understand molecular mechanisms underlying a complex neurological disease at the single-cell level and to provide a platform for screening for therapeutics for the disease.
Proceedings of the National Academy of Sciences of the United States of America

Suggestions

Regulation of Glutathione S-Transferase Mu with type 1 diabetes and its regulation with antioxidants
SADİ, GÖKHAN; Kartal, Deniz Irtem; Güray, Nülüfer Tülün (2013-01-01)
Objective: Increased oxidative stress is now related with the pathogenesis and the chronic complications associated with the disease, diabetes mellitus. While roles of oxidative stress in diabetic complications are widely studied, the molecular mechanisms playing role in the regulations of detoxification enzymes in the presence of antioxidants have not been clearly established because of the complexity of the pathways.
High frequency oscillations in the subthalamic nucleus: A neurophysiological marker of the motor state in Parkinson's disease
Özkurt, Tolga Esat; Butz, Markus; Homburger, Melanie; Elben, Saskia; Vesper, Jan; Wojtecki, Lars; Schnitzler, Alfons (2011-06-01)
Increasing evidence suggests that abnormal oscillatory activity in basal ganglia and cortex plays a pivotal role in the pathophysiology of Parkinson's disease. Recordings of local field potentials from subthalamic nucleus of patients undergoing deep brain stimulation have focused on oscillations occurring at frequencies below 100 Hz in the alpha, beta and gamma range and suggested that, in particular, an increase of beta band oscillations underlies slowing of movement in Parkinson's disease. Recent findings...
Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson's disease
Hirschmann, J.; Özkurt, Tolga Esat; Butz, M.; Homburger, M.; Elben, S.; Hartmann, C. J.; Vesper, J.; Wojtecki, L.; Schnitzler, A. (2011-04-01)
Neuronal oscillations are assumed to play a pivotal role in the pathophysiology of Parkinson's disease (PD). Neurons in the subthalamic nucleus (STN) generate oscillations which are coupled to rhythmic population activity both in other basal ganglia nuclei and cortical areas.
Relapsing-Remitting Multiple Sclerosis diagnosis from cerebrospinal fluids via Fourier transform infrared spectroscopy coupled with multivariate analysis
Yonar, Dilek; Ocek, Levent; Tiftikcioglu, Bedile Irem; Zorlu, Yasar; Severcan, Feride (2018-01-18)
Multiple sclerosis (MS) is a chronic, progressive, inflammatory and degenerative disease of central nervous system. Here, we aimed to develop a method for differential diagnosis of Relapsing-Remitting MS (RRMS) and clinically isolated syndrome (CIS) patients, as well as to identify CIS patients who will progress to RRMS, from cerebrospinal fluid (CSF) by infrared (IR) spectroscopy and multivariate analysis. Spectral analyses demonstrated significant differences in the molecular contents, especially in the l...
Phase validation of neurotoxic animal models of Parkinson's disease
Telkes, İlknur; Jakubowska Doğru, Ewa; Department of Medical Informatics (2012)
Parkinson’s disease (PD) is characterized by the progressive loss of dopaminergic nigral neurons and striatal dopamine resulting in serious motor deficits but also some non-motor anomalies. Animal models of human neurodegenerative diseases are essential for better understanding their pathogenesis and developing efficient therapeutic tools. There are many different PD models, however, none of them is fully reproducing all the symptoms of the disease. In addition, different investigators use different behavio...
Citation Formats
F. Paraskevopoulou, P. Parvizi, G. Senger, N. Tunçbağ, C. Rosenmund, and F. Yildirim, “Impaired inhibitory GABAergic synaptic transmission and transcription studied in single neurons by Patch-seq in Huntington’s disease,” Proceedings of the National Academy of Sciences of the United States of America, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85105445344&origin=inward.