High frequency oscillations in the subthalamic nucleus: A neurophysiological marker of the motor state in Parkinson's disease

2011-06-01
Özkurt, Tolga Esat
Butz, Markus
Homburger, Melanie
Elben, Saskia
Vesper, Jan
Wojtecki, Lars
Schnitzler, Alfons
Increasing evidence suggests that abnormal oscillatory activity in basal ganglia and cortex plays a pivotal role in the pathophysiology of Parkinson's disease. Recordings of local field potentials from subthalamic nucleus of patients undergoing deep brain stimulation have focused on oscillations occurring at frequencies below 100 Hz in the alpha, beta and gamma range and suggested that, in particular, an increase of beta band oscillations underlies slowing of movement in Parkinson's disease. Recent findings showing that the amplitude of high frequency oscillations (>200 Hz) couples with the phase of beta activity have raised the important question about the role of subthalamic high frequency oscillations in Parkinson's disease. To investigate functional characteristics and clinical relevance of high frequency oscillations, we recorded local field potentials from 18 subthalamic nuclei of 9 akinetic-rigid Parkinsonian patients with implanted deep brain stimulation electrodes and still externalised leads before and after intake of levodopa. We identified two distinct bands of high frequency oscillations, one centred around 250 Hz and another one around 350 Hz that show characteristic levodopa dependent amplitude and coupling behaviours. Administration of levodopa changed the power ratio between the two high frequency bands towards the component centred around 350 Hz in all 18 nuclei under study (p<10(-4)). Moreover, this power ratio correlated significantly with the Unified Parkinson's Disease Rating Scale hemibody akinesia/rigidity subscore (r = 0.3618, p = 0.015), but interestingly not with beta peak power (p = 0.1) suggesting that levodopa induced changes in high frequency and beta oscillations are at least potentially independent of each other. Accordingly, a combined parameter composed of power ratio of high frequency oscillations and beta peak power significantly increased the correlation with the motor state (r = 0.45, p = 0.004). These results indicate that a shift from slower to faster frequencies of the spectrum greater than 200 Hz represents a prokinetic neurophysiological marker underlying levodopa induced motor improvement in Parkinson's disease.
EXPERIMENTAL NEUROLOGY

Suggestions

Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson's disease
Hirschmann, J.; Özkurt, Tolga Esat; Butz, M.; Homburger, M.; Elben, S.; Hartmann, C. J.; Vesper, J.; Wojtecki, L.; Schnitzler, A. (2011-04-01)
Neuronal oscillations are assumed to play a pivotal role in the pathophysiology of Parkinson's disease (PD). Neurons in the subthalamic nucleus (STN) generate oscillations which are coupled to rhythmic population activity both in other basal ganglia nuclei and cortical areas.
Differential modulation of STN-cortical and cortico-muscular coherence by movement and levodopa in Parkinson's disease
Hirschmann, J.; Özkurt, Tolga Esat; Butz, M.; Homburger, M.; Elben, S.; Hartmann, C. J.; Vesper, J.; Wojtecki, L.; Schnitzler, A. (2013-03-01)
Previous research suggests that oscillatory coupling between cortex, basal ganglia and muscles plays an important role in motor behavior. Furthermore, there is evidence that oscillatory coupling is altered in patients with movement disorders such as Parkinson's disease (PD).
A direct relationship between oscillatory subthalamic nucleus-cortex coupling and rest tremor in Parkinson's disease
Hirschmann, Jan; Hartmann, Christian J.; Butz, Markus; Hoogenboom, Nienke; Özkurt, Tolga Esat; Elben, Saskia; Vesper, Jan; Wojtecki, Lars; Schnitzler, Alfons (2013-12-01)
Electrophysiological studies suggest that rest tremor in Parkinson's disease is associated with an alteration of oscillatory activity. Although it is well known that tremor depends on cortico-muscular coupling, it is unclear whether synchronization within and between brain areas is specifically related to the presence and severity of tremor. To tackle this longstanding issue, we took advantage of naturally occurring spontaneous tremor fluctuations and investigated cerebral synchronization in the presence an...
Impaired inhibitory GABAergic synaptic transmission and transcription studied in single neurons by Patch-seq in Huntington's disease
Paraskevopoulou, Foteini; Parvizi, Poorya; Senger, Gokce; Tunçbağ, Nurcan; Rosenmund, Christian; Yildirim, Ferah (2021-05-11)
Transcriptional dysregulation in Huntington's disease (HD) causes functional deficits in striatal neurons. Here, we performed Patchsequencing (Patch-seq) in an in vitro HD model to investigate the effects of mutant Huntingtin (Htt) on synaptic transmission and gene transcription in single striatal neurons. We found that expression of mutant Htt decreased the synaptic output of striatal neurons in a cell autonomous fashion and identified a number of genes whose dysregulation was correlated with physiological...
Unilateral deep brain stimulation suppresses alpha and beta oscillations in sensorimotor cortices
Abbasi, Omid; Hirschmann, Jan; Storzer, Lena; Özkurt, Tolga Esat; Elben, Saskia; Vesper, Jan; Wojtecki, Lars; Schmitz, Georg; Schnitzler, Alfons; Butz, Markus (2018-07-01)
Deep brain stimulation (DBS) is an established therapy to treat motor symptoms in movement disorders such as Parkinson's disease (PD). The mechanisms leading to the high therapeutic effectiveness of DBS are poorly understood so far, but modulation of oscillatory activity is likely to play an important role. Thus, investigating the effect of DBS on cortical oscillatory activity can help clarifying the neurophysiological mechanisms of DBS. Here, we aimed at scrutinizing changes of cortical oscillatory activit...
Citation Formats
T. E. Özkurt et al., “High frequency oscillations in the subthalamic nucleus: A neurophysiological marker of the motor state in Parkinson’s disease,” EXPERIMENTAL NEUROLOGY, vol. 229, no. 2, pp. 324–331, 2011, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/96906.