Computational-Experimental Design Framework for Laser Path Length Controller

Fenercioglu, Tevfik Ozan
Yalçınkaya, Tuncay
The application areas of piezoelectric materials are expanding rapidly in the form of piezo harvesters, sensors and actuators. A path length controller is a high-precision piezoelectric actuator used in laser oscillators, especially in ring laser gyroscopes. A path length controller alters the position of a mirror nanometrically by means of a control voltage to stabilize the route that a laser beam travels in an integral multiple of laser wavelength. The design and verification of a path length controller performance requires long (up to 3 months), expensive and precise production steps to be successfully terminated. In this study, a combined computational-experimental design framework was developed to control, optimize and verify the performance of the path length controller, without the need for ring laser gyroscope assembly. A novel framework was structured such that the piezoelectric performance characteristics were calculated using finite element analysis. Then, a stand-alone measurement system was developed to verify the finite element analysis results before system integration. The final performance of the novel framework was verified by a direct measurement method called mode-scanning, which is founded on laser interferometry. The study is concluded with the explanation of measurement errors and finite element correlations.
Citation Formats
T. O. Fenercioglu and T. Yalçınkaya, “Computational-Experimental Design Framework for Laser Path Length Controller,” pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: