Fabric based wearable triboelectric nanogenerators for human machine interface

Electronic textiles received significant attention with the advancements in materials for wearable electronics. Lack of washing stability and the need for an external power source for wearable electronics are the two major problems that needs to be addressed urgently. Significant portion of the reported solutions fail to propose simple and scalable production steps. In this study, a low cost and scalable design was proposed as a combined solution for aforementioned problems. Thermoplastic polyurethane (TPU) film laminated silver nanowire (Ag NW) modified fabrics were utilized as triboelectric nanogenerator (TENG) electrodes to self-power wearable devices for human machine interfacing. Electrical resistance changes and Joule heating performances of the fabricated devices were investigated and a washing stability up to 15 washing cycles was demonstrated. From the fabricated TENGs, a maximum power output of 1.25 W/m2 was obtained with an open circuit voltage and short circuit current of -162 V and -42 mu A, respectively. In order to demonstrate the true potential of fabricated TENGs, a selfpowered e-wristband was developed as a human machine interface and was used as a keyboard to control basic computer operations.


Sensitivity improvement strategies and applications for flexible and wearable capacitive pressure sensors
Çiçek, Melih Ögeday; Ünalan, Hüsnü Emrah; Çınar, Simge; Department of Metallurgical and Materials Engineering (2022-8)
Pressure sensors have attracted great interest in parallel with developments in wearable electronics, robotics, human-machine interface devices, and electronic skin. In this field, capacitive pressure sensors are gaining increasing research attention due to their high sensitivity, high stability, fast response/recovery times, and simple manufacturing routes. While capacitive pressure sensors have prominent features, there is still a long way to go before they become more common in wearable technology. Incre...
Seamless Monolithic Design for Foam Based, Flexible, Parallel Plate Capacitive Sensors
Çiçek, Melih Ögeday; Doğanay, Doğa; Durukan, Mete Batuhan; Ünalan, Hüsnü Emrah (2021-04-01)
Capacitive pressure sensors received significant attention in line with advancements in wearable electronics. However, in the era of the wearable electronics, fabricated sensors fail to fulfill the absolute requirements. Significant portion of the previously reported capacitive pressure sensors suffer from excessive weight, lack of air permeability, and washing stability due to the use of separate electrode layers. A low-cost, lightweight, parallel plate capacitive sensor with a unique seamless monolithic d...
Impact damage sensing of multiscale composites through epoxy matrix containing carbon nanotubes
Arronche, Luciana; La Saponara, Valeria; Yesil, Sertan; Bayram, Göknur (2013-06-05)
Carbon nanotubes are used to provide increased electrical conductivity for polymer matrix materials, thus offering a method to monitor the structure's health. This work investigates the effect of impact damage on the electrical properties of multiscale composite samples, prepared with woven fiberglass reinforcement and epoxy resin modified with as-received multi-walled carbon nanotubes (MWCNTs). Moreover, this study addresses potential bias from manufacturing, and investigates the effectiveness of resistanc...
Modeling effects of material properties and composition on ultrasound propagation
Özkök, Okan; Uludağ, Yusuf; Department of Chemical Engineering (2017)
Ultrasonic methods for material characterization have increasingly been used for the last decades thanks to advances in electronics and digital technologies since conventional methods accommodate several disadvantages like being time consuming. Advanced technology has brought highly accurate measurements with reasonable confidence level, and flexible ultrasonic testing parameters. The aim of this work is to carry out material characterization by combining modeling study and outputs of the ultrasonic device....
Structural vibration analysis of single walled carbon nanotubes with atom-vacancies
Doğan, İbrahim Onur; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2010)
Recent investigations in nanotechnology show that carbon nanotubes (CNT) have one of the most significant mechanical, electrical and optical properties. Interactions between those areas like electrical, optical and mechanical properties are also very promising in both research and industrial fields. Those unique characteristics are built by mainly the atomistic structure of the carbon nanotubes. In this thesis, the effects of vacant atoms on single walled carbon nanotubes (SWCNT) are investigated using matr...
Citation Formats
D. Doğanay, M. Ö. Çiçek, M. B. Durukan, and H. E. Ünalan, “Fabric based wearable triboelectric nanogenerators for human machine interface,” NANO ENERGY, vol. 89, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94534.