Fourteen percent efficiency ultrathin silicon solar cells with improved infrared light management enabled by hole-selective transition metal oxide full-area rear passivating contacts

Nasser, Hisham
Borra, Mona Zolfaghari
Çiftpınar, Emine Hande
Eldeeb, Basil
Turan, Raşit
The present study investigates the application of hole-selective transition metal oxide (TMO) layers (MoOx, V2Ox, and WOx) with silver (Ag) as full-area rear contact to 22.5 mu m-thick low-quality Cz p-type c-Si solar cells. Thin films of metal oxides are deposited directly on p-type c-Si by thermal evaporation at room temperature. The large work function of these TMOs creates strong accumulation at the interface with p-type c-Si, which allows only holes to transport and simultaneously suppress the interfacial recombination current density (J(0)) and contact resistivity (rho(c)). The current generation and losses of 22.5 mu m-thick solar cells with different hole-selective TMO/Ag at the rear are simulated. The presence of TMO/Ag at the rear is found to significantly reduce parasitic light absorption at longer wavelengths which becomes more pronounced for ultrathin wafers, providing significant advantages over conventional Al contact. The best device performance was attained by the MoOx/p-type c-Si solar cells, demonstrating a considerably high efficiency (eta) of 14% with V-oc of 555 mV, FF of 76.0%, and J(sc) of 33.2 mA/cm(2). Furthermore, the present work is the first to employ MoOx, V2Ox, and WOx as rear contact in ultrathin p-type c-Si solar cells.


Atomic layer deposited Al2O3 passivation of type II InAs/GaSb superlattice photodetectors
Salihoglu, Omer; Muti, Abdullah; Kutluer, Kutlu; Tansel, Tunay; Turan, Raşit; Kocabas, Coskun; Aydinli, Atilla (AIP Publishing, 2012-4)
Taking advantage of the favorable Gibbs free energies, atomic layer deposited (ALD) aluminum oxide (Al2O3) was used as a novel approach for passivation of type II InAs/GaSb superlattice (SL) midwave infrared (MWIR) single pixel photodetectors in a self cleaning process (lambda(cut-off) similar to 5.1 mu m). Al2O3 passivated and unpassivated diodes were compared for their electrical and optical performances. For passivated diodes, the dark current density was improved by an order of magnitude at 77 K. The ze...
Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact
MEHMOOD, Haris; NASSER, Hisham; Tauqeer, Tauseef; HUSSAIN, Shahzad; Ozkol, Engin; Turan, Raşit (2018-03-25)
Transition metal oxides/silicon heterocontact solar cells are the subject of intense research efforts owing to their simpler processing steps and reduced parasitic absorption as compared with the traditional silicon heterostructure counterparts. Recently, molybdenum oxide (MoOx, x<3) has emerged as an integral transition metal oxide for crystalline silicon (cSi)-based solar cell based on carrier-selective contacts (CSCs). In this paper, we physically modelled the CSC-based cSi solar cell featuring MoOx/intr...
Development of hole transport transparent conductive electrodes for n-type crystalline silicon solar cells
Akdemir, Ozan; Bek, Alpan; İmer, Muhsine Bilge; Department of Micro and Nanotechnology (2018)
Conventional transparent conductive electrodes (TCEs) used in crystal silicon (c-Si) solar cells are commonly made of indium tin oxide (ITO) which provides low sheet resistance and high transparency. However, due to indium scarcity, ITO layers increase the fabrication cost; thus, alternative TCEs, such as fluorine-doped tin oxide (FTO), zinc oxide (ZnO), metal nanowires and Oxide/Metal/Oxide (OMO) multilayers, are being investigated. Conventional solar cells also make use of doped layers, to create the junc...
Crystallization and phase separation mechanism of silicon oxide thin films fabricated via electron beam evaporation of silicon monoxide
Gündüz, Deniz Cihan; Turan, Raşit; Yerci, Selçuk; Department of Micro and Nanotechnology (2015)
Silicon nanocrystals (NCs) imbedded in a matrix of silicon oxide have drawn much attention due to their applications in optoelectronic devices and third-generation solar cells. Several methods were reported for the fabrication of Si NCs. Among these techniques, there are aerosol synthesis, chemical vapor deposition, ion implantation, magnetron sputtering and thermal evaporation. However, electron beam evaporation is a straightforward and effective technique for the fabrication of silicon oxide thin films si...
Simulation of silicon heterostructure solar cell featuring dopant-free carrier-selective molybdenum oxide and titanium oxide contacts
Mehmood, Haris; Nasser, Hisham; Tauqeer, Tauseef; Turan, Raşit (Elsevier BV, 2019-12-01)
Dopant-free carrier-selective transition metal oxide (TMO) contacts offer unique electrical properties pertaining to the rectification of doping-related issues in silicon (cSi) solar cell. In this paper, cSi heterojunction solar cell featuring TMOs of molybdenum oxide (MoOx) and titanium oxide (TiOx) as hole- and electron-selective contacts, respectively, has been realized using Silvaco TCAD. The photovoltaic performance has been evaluated based on the electron affinity of TiOx, its thickness, interfacial c...
Citation Formats
H. Nasser, M. Z. Borra, E. H. Çiftpınar, B. Eldeeb, and R. Turan, “Fourteen percent efficiency ultrathin silicon solar cells with improved infrared light management enabled by hole-selective transition metal oxide full-area rear passivating contacts,” PROGRESS IN PHOTOVOLTAICS, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: