Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Dynamic analysis of multi-stage helical geared rotors with transfer matrix method
Download
035500.pdf
Date
1994
Author
Okan, Safa Tarkan
Metadata
Show full item record
Item Usage Stats
143
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/9595
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
DYNAMIC ANALYSIS OF GEARED ROTORS BY FINITE-ELEMENTS
KAHRAMAN, A; Özgüven, Hasan Nevzat; HOUSER, DR; ZAKRAJSEK, JJ (1992-09-01)
A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis of geared rotors by c...
Dynamic analysis of geared shaft systems by using continuous system models
Şener, Ömer Sedat; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (1989)
DYNAMIC ANALYSIS OF GEARED SHAFT SYSTEMS BY USING A CONTINUOUS SYSTEM MODEL
Şener, Ö Sedat; Özgüven, Hasan Nevzat (Elsevier BV, 1993-09-22)
In this study dynamic mesh forces and dynamic factors in a geared shaft system are studied by using a continuous system model. The system consists of a gear pair, two shafts carrying gears, and two inertias representing drive and load in the system. A continuous system model is used to include the shaft inertias, which are usually disregarded even in most of the sophisticated models. The primary aim of this work is to provide a tool for studying the effect of shaft inertia in gear dynamics, and to present s...
Dynamic modeling of high precision servo systems with gear backlash
Yumrukçal, Zafer; Söylemez, Eres; Department of Mechanical Engineering (2013)
Although the mechanical solutions, like spring preloaded hinge mechanism, compensate for backlash in servo drive systems with high precision positioning requirement, these solutions may not be preferred because of their drawbacks like high friction forces/torques and diminished life cycles for mating gears. Besides, the use regular gear meshes could be enforced by any reason, like cost efficiency or simplicity of the solution. On such occasions, to maintain performance requirements like high positioning acc...
Dynamic analysis of capacitive micromachined ultrasonic transducers
Bayram, Barış; Kupnik, M; Ergun, AS; Oralkan, O; Nikoozadeh, A; Khuri-Yakub, BT (Institute of Electrical and Electronics Engineers (IEEE), 2005-12-01)
Electrostatic transducers are usually operated under a DC bias below their collapse voltage. The same scheme has been adopted for capacitive micromachined ultrasonic transducers (cMUTs). DC bias deflects the cMUT membranes toward the substrate, so that their centers are free to move during both receive and transmit operations. In this paper, we present time-domain, finite element calculations for cMUTs using LS-DYNA, a commercially available finite element package. In addition to this DC bias mode, other ne...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. T. Okan, “Dynamic analysis of multi-stage helical geared rotors with transfer matrix method,” Middle East Technical University, 1994.