Development of Hydrogen Separation Membrane in Palladium Based Ternary Systems

2022-1-25
Köse, Mehmet Mert
A study was carried out into dense metallic membranes for hydrogen separation. Two palladium-based system were characterized Pd-Mn-Ag and Pd-Co-Ni. Membranes were produced via sputter deposition in combinatorial geometry. For this purpose, sputter targets were arranged in triangular manner, and there were total of 21 substrates just above the targets. Membranes were screened via resistivity measurements under argon and hydrogen carried out up to 450 oC. A reactivity index defined as resistivity under hydrogen over that in argon was used as an index of suitability of the thin film membranes for hydrogen separation. The study has shown that Pd-Co-Ni system, except for small region close to Co corner, the rest of the ternary field had f.c.c. structure. Unfortunately, these membranes showed no reaction with hydrogen under 1bar of hydrogen pressure up to 450 oC and therefore they were considered unsuitable as separation membranes. Pd-Mn-Ag ternary system was more fruitful. Similarly, the system had a wide compositional field with f.c.c. structure. These were on the side of Ag-Pd line and moreover, considerable fractions of these membranes were reacting with hydrogen implying that they may be suitable as separation membrane. Based on their reactivity curve, and palladium content Pd35Mn13Ag52, Pd56Mn13Ag31 and Pd62Mn18Ag20 were selected as candidates for hydrogen separation. Selected compositions were then sputter deposited on de-alloyed brass as support material for permeability measurements. Dealloying was carried out at 460 oC for 4 hours under vacuum (10-6 mbar). This has yielded copper substrate with pores of approximately 1 m in size. Thin film membranes of 5 µm thick were deposited on the nanoporous copper. Unfortunately, the measurements were not possible as the coated assembly were not argon tight. A thicker deposition 7 micron thick with substrate heating to 350oC also failed as these assembly was not structurally stable during testing.

Suggestions

Hydrogen storage in magnesium based thin films
Akyıldız, Hasan; Öztürk, Tayfur; Özenbaş, Ahmet Macit; Department of Metallurgical and Materials Engineering (2010)
A study was carried out for the production of Mg-based thin films which can absorb and desorb hydrogen near ambient conditions, with fast kinetics. For this purpose, two deposition units were constructed; one high vacuum (HV) and the other ultra high vacuum (UHV) deposition system. The HV system was based on a pyrex bell jar and had two independent evaporation sources. The unit was used to deposit films of Mg, Mg capped with Pd and Au-Pd as well as Mg-Cu both in co-deposited and multilayered form within a t...
Direct synthesis of hydrogen storage alloys from their oxides
Tan, Serdar; Öztürk, Tayfur; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2011)
The aim of this study is the synthesis of hydrogen storage compounds by electrodeoxidation technique which offers an inexpensive and rapid route to synthesize compounds from oxide mixtures. Within the scope of this study, two hydrogen storage compounds, FeTi and Mg2Ni, are aimed to be produced by this technique. In the first part, effect of sintering conditions on synthesis of FeTi was studied. For this purpose, oxide pellets made out of Fe2O3-TiO2 powders were sintered at temperatures between 900 °C – 1300...
Induction thermal plasma synthesis of Mg2Ni nanoparticles
Aktekin, Burak; ÇAKMAK, GÜLHAN; Öztürk, Tayfur (2014-06-15)
A study was carried out into possibility of thermal plasma synthesis of Mg2Ni nanoparticles. Both prealloyed powders and elemental powders were used as precursors in an inductively coupled thermal plasma incorporating two injection probes located axially in the reactor one from the top and the other from the bottom. The study has shown that the use of prealloyed Mg2Ni as precursor leads to its disintegration in the plasma condensing into separate phases and therefore was not suitable for the synthesis of Mg...
A Combinatorial study on hydrogen separation membranes
Pişkin, Fatih; Öztürk, Tayfur; Department of Metallurgical and Materials Engineering (2018)
Metallic membranes among the hydrogen separation membranes are quite attractive due to their very high hydrogen selectivity and hydrogen permeability. The efforts in metallic membranes generally concentrate on to identify membrane compositions which have a high hydrogen permeability with a reduced cost. Among the metallic membranes, Pd and Pd alloys, i.e. f.c.c. membranes are quite common as separation membranes. However, the high cost of Pd limits its widespread use in industrial applications. The efforts ...
Numerical investigations on the hydrogen jet pressure variations in a strut based scramjet combustor
Suppandipillai, Jeyakumar; Kandasamy, Jayaraman; Sivakumar, R.; Karaca, Mehmet; Karthik, K. (2021-04-01)
Purpose – This paper aims to study the influences of hydrogen jet pressure on flow features of a strut-based injector in a scramjet combustor underreacting cases are numerically investigated in this study. Design/methodology/approach – The numerical analysis is carried out using Reynolds Averaged Navier Stokes (RANS) equations with the Shear Stress Transport k-v turbulence model in contention to comprehend the flow physics during scramjet combustion. The three major parameters such as the shock wave pattern...
Citation Formats
M. M. Köse, “Development of Hydrogen Separation Membrane in Palladium Based Ternary Systems,” M.S. - Master of Science, Middle East Technical University, 2022.