Improvement of temporal resolution of fMRI data for brain decoding

Download
2022-2-10
Varol, Emel
In this study, we aim to increase the accuracy of the mapping between the states of the brain and problem-solving phases namely planning and execution. To create a computational model to generate the mapping, an fMRI dataset obtained from subjects solving the Tower of London problem has been used. fMRI data is suitable for this problem as it provides regional and time-varying changes in brain metabolism. However, developing the model using fMRI data is not trivial. Generally, fMRI data has a very large feature vector while having a small sample size due to the scanner limitations. We propose two methods to overcome these limitations and increase the mapping performance. Both methods have a preliminary stage where we perform preprocessing. Preprocessing stage includes feature selection and whitening. The proposed methods are built with polynomial regression and neural networks utilizing the spatial and temporal nature of the data.

Suggestions

On the Entropy of Brain Anatomic Regions for Complex Problem Solving
Degirmendereli, Gonul Gunal; Newman, Sharlene D.; Yarman Vural, Fatoş Tunay (2019-01-01)
In this paper, we aim to measure the information content of brain anatomic regions using the functional magnetic resonance images (fMRI) recorded during a complex problem solving (CPS) task. We, also, analyze the brain regions, activated in different phases of the problem solving process. Previous studies have widely used machine learning approaches to examine the active anatomic regions for cognitive states of human subjects based on their fMRI data. This study proposes an information theoretic method for ...
Analyzing Complex Problem Solving by Dynamic Brain Networks
Alchihabi, Abdullah; Ekmekci, Ömer; Kivilcim, Baran B.; Newman, Sharlene D.; Yarman Vural, Fatos T. (2021-12-01)
Complex problem solving is a high level cognitive task of the human brain, which has been studied over the last decade. Tower of London (TOL) is a game that has been widely used to study complex problem solving. In this paper, we aim to explore the underlying cognitive network structure among anatomical regions of complex problem solving and its subtasks, namely planning and execution. A new computational model for estimating a brain network at each time instant of fMRI recordings is proposed. The suggested...
FUNCTIONAL NETWORKS OF ANATOMIC BRAIN REGIONS
Velioglu, Burak; Aksan, Emre; Onal, Itir; Firat, Orhan; Ozay, Mete; Yarman Vural, Fatoş Tunay (2014-08-20)
In this study, we propose a new approach to construct a two-level functional brain network. The nodes of the first-level network are the voxels of the functional Magnetic Resonance Images (tMRI) recorded during an object recognition task. The nodes of the network at the second-level are the anatomic regions of the brain. The arcs of the first level are estimated by a linear regression equation for the meshes formed around each voxel. Neighbors of each voxel are determined by using a functional similarity me...
Encoding Multi-Resolution Brain Networks Using Unsupervised Deep Learning
Rahnama, Arash; Alchihabi, Abdullah; Gupta, Vijay; Antsaklis, Panos J.; Yarman Vural, Fatoş Tunay (2017-10-25)
The main goal of this study is to extract a set of brain networks in multiple time-resolutions to analyze the connectivity patterns among the anatomic regions for a given cognitive task. We suggest a deep architecture which learns the natural groupings of the connectivity patterns of human brain in multiple time-resolutions. The suggested architecture is tested on task data set of Human Connectome Project (HCP) where we extract multi-resolution networks, each of which corresponds to a cognitive task. At the...
A Hierarchical representation and decoding of fMRI data by partitioning a brain network
Moğultay, Hazal; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2017)
In this study, we propose a hierarchical network representation of human brain extracted from fMRI data. This representation consists of two levels. In the first level, we form a network among the voxels, smallest building block of fMRI data. In the second level, we define a set of supervoxels by partitioning the first level network into a set of subgraphs, which are assu med to represent homogeneous brain regions with respect to a predefined criteria. For this purpose, we develop a novel brain parcellation...
Citation Formats
E. Varol, “Improvement of temporal resolution of fMRI data for brain decoding,” M.S. - Master of Science, Middle East Technical University, 2022.